This is the python code of "Graph Based Database Generation from Query Constraints". [Paper] [Code]
The goal is to leverage graph method (GCN) to learn the Cumulative Density Function (CDF) of synthetic database generation problem. The query workloads are considered as Constraint Satisfaction Problems (CSPs).
- census
- wine
python train.py --dataset wine-3 --query-size 10000 --channels 2,16,1 --num_layers 3 --epochs 3000 --bs 1000 --lr 1e-2 --opt adam --loss MSE
python PGM.py --dataset wine-3 --query-size 10
python SMT_z3.py --dataset wine-3 --query-size 10
- dataset.py : Process the datasets.
- utils.py / plot_util.py / ce_util.py : Utilitiy functions.
- preprocessing.py : Build the graph
- models.py : Build the GCN model.
- run_experiments.py: Script for PGM / SMT baseline to collect results.
- demo.py : simple 2D demo for proposal.
- Python
- PyTorch
- torch_geometric
- Networkx