-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cf223a7
commit 585d86e
Showing
2 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
name: dREG | ||
channels: | ||
- conda-forge | ||
- bioconda | ||
- anaconda | ||
- defaults | ||
dependencies: | ||
- python ==3.8 | ||
- conda-forge::r-base==3.6.3 | ||
- bioconda::bedops | ||
- bioconda::ucsc-bedgraphtobigwig | ||
- anaconda::pcre | ||
- conda-forge::boost | ||
prefix: /projects/dan1/data/Brickman/conda/envs/dReg |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# 1. Running | ||
|
||
## Make dReg bigwigs | ||
|
||
If your nascent RNA-seq data is already aligned, bw suitable for use with dReg can be prepared using Danko-Lab [RunOnBamToBigWig](https://github.com/Danko-Lab/RunOnBamToBigWig) | ||
|
||
If you have fastq files from PRO-seq, GRO-seq, or CHrO-seq, run the Danko-Lab's [mapping pipeline](https://github.com/Danko-Lab/proseq2.0) using the shared `dReg_dataprep` conda environment | ||
|
||
**Example SBATCH script for mapping pipeline** | ||
|
||
```bash | ||
#!/bin/bash | ||
|
||
#SBATCH --job-name=pro_align | ||
#SBATCH -c 20 | ||
#SBATCH --mem=30gb | ||
#SBATCH --time=00-24:00:00 | ||
#SBATCH --output=01_proseq_alignment.out | ||
#SBATCH --mail-type=BEGIN,END | ||
#SBATCH --mail-user=YOUR-EMAIL | ||
|
||
module load miniconda/latest | ||
source activate dReg_dataprep | ||
|
||
PROSEQ=("/maps/projects/dan1/data/Brickman/proseq2.0/proseq2.0.bsh") | ||
GENO=("/scratch/Brickman/references/mus_musculus/ensembl/GRCm38_102/") | ||
RESL=("/maps/projects/dan1/data/Brickman/projects/NAME_DATE/data/external/proseq/") | ||
SAMPLES=("SRX14164616_SRR18010280 SRX14164617_SRR18010278") | ||
|
||
for sample in ${SAMPLES}; do | ||
bash ${PROSEQ} -i ${GENO}bwa \ | ||
-c ${GENO}GRCm38.102.genome \ | ||
-PE --RNA5=R2_5prime --UMI1=6 \ | ||
-O ${RESL} \ | ||
-I ${sample} \ | ||
--thread=20 | ||
done | ||
``` | ||
|
||
## GPU check | ||
|
||
Check available GPUs and running processes before using dReg. GPU 0 is reserved for Brickman group | ||
|
||
```bash | ||
nvidia-smi | ||
``` | ||
|
||
## Example dReg script | ||
|
||
```bash | ||
#!/bin/bash | ||
|
||
#SBATCH --job-name=dREG | ||
#SBATCH -c 30 | ||
#SBATCH --mem=30gb | ||
#SBATCH --time=00-24:00:00 | ||
#SBATCH --output=01-1_dREG.out | ||
#SBATCH --mail-type=BEGIN,END | ||
#SBATCH --mail-user=YOUR-EMAIL | ||
|
||
module load miniconda/latest cuda/11.8-dangpu cudnn/8.6.0-dangpu | ||
source activate dReg | ||
|
||
BW=("../data/assays/RNA_INITIAL_DATE/processed/bw/") | ||
RESL=("../results/01/dREG/") | ||
dREG=("/projects/dan1/data/Brickman/dREG/run_dREG.bsh") | ||
MODEL=("/projects/dan1/data/Brickman/dREG/resources/asvm.gdm.6.6M.20170828.rdata") | ||
|
||
|
||
SAMPLES=("0h_A 0h_B 2h_A 2h_B") | ||
|
||
for sample in ${SAMPLES}; do | ||
bash ${dREG} ${BW}${sample}_sorted_filt_dedup_plus.bw ${BW}${sample}_sorted_filt_dedup_minus.bw \ | ||
${RESL}${sample}_test ${MODEL} \ | ||
30 0 | ||
done | ||
``` | ||
|
||
# 2. Installation | ||
|
||
## Installing dReg | ||
|
||
**Note:** Python version in conda env must be 3.8, and R version < 4.0 | ||
|
||
```bash | ||
cd /maps/projects/dan1/data/Brickman/conda/ | ||
module load miniconda/latest | ||
mamba env create -p /projects/dan1/data/Brickman/conda/envs/dReg -f dREG.yml | ||
source activate dReg | ||
|
||
cd /maps/projects/dan1/data/Brickman/ | ||
git clone https://github.com/Danko-Lab/dREG | ||
cd dREG | ||
make R_dependencies | ||
|
||
R | ||
devtools::install_github("CshlSiepelLab/RPHAST") | ||
devtools::install_version("MASS", version="7.3-51.5", repos="https://mirrors.dotsrc.org/cran/") | ||
install.packages("e1071", repos="https://mirrors.dotsrc.org/cran/") | ||
devtools::install_version("randomForest", version="4.6-14", repos="https://mirrors.dotsrc.org/cran/") | ||
quit() | ||
|
||
make dreg | ||
mkdir resources | ||
cd resources | ||
wget ftp://cbsuftp.tc.cornell.edu/danko/hub/dreg.models/asvm.gdm.6.6M.20170828.rdata | ||
``` | ||
|
||
## Installing Rgtsvm | ||
|
||
Rgtsvm is required for dReg to use GPU resources | ||
|
||
```bash | ||
# make sure in dREG repo and that dReg environment is activated | ||
cd /maps/projects/dan1/data/Brickman/dREG | ||
source activate dReg | ||
|
||
R | ||
install.packages(c("bit64", "snow", "SparseM"), repos="https://mirrors.dotsrc.org/cran/") | ||
devtools::install_version("lattice", version="0.20-41", repos="https://mirrors.dotsrc.org/cran/") | ||
install.packages("Matrix", repos="https://mirrors.dotsrc.org/cran/") | ||
quit() | ||
mamba install -c conda-forge boost=1.70.0 | ||
|
||
mkdir third-party | ||
cd third-party | ||
git clone https://github.com/Danko-Lab/Rgtsvm.git | ||
cd Rgtsvm | ||
|
||
module load cuda/11.8-dangpu | ||
module load cudnn/8.6.0-dangpu | ||
|
||
R CMD INSTALL --configure-args="--with-boost-home=$CONDA_PREFIX" Rgtsvm | ||
``` |