Skip to content

braun-steven/simple-einet

Repository files navigation

Python version License Code style: black & isort

An EinsumNetworks Implementation

This repository contains code for my personal EinsumNetworks implementation.

Notebooks

The notebooks directory contains Jupyter notebooks that demonstrate the usage of this library.

PyTorch Lightning Training

The main_pl.py script offers PyTorch-Lightning based training for discriminative and generative Einets.

Classification on MNIST examples:

python main_pl.py dataset=mnist batch_size=128 epochs=100 dist=normal D=5 I=32 S=32 R=8 lr=0.001 gpu=0 classification=true 

Generative training on MNIST:

python main_pl.py dataset=mnist D=5 I=16 R=10 S=16 lr=0.1 dist=binomial epochs=10 batch_size=128

MNIST Samples

Installation

You can install simple-einet as a dependency in your project as follows:

pip install git+https://github.com/braun-steven/simple-einet

If you want to additionally install the dependencies requires to launch the provided scripts such as main.py, main_pl.py or the notebooks, run

pip install "git+https://github.com/braun-steven/simple-einet#egg=simple-einet[app]"

If you plan to edit the files after installation:

git clone [email protected]:braun-steven/simple-einet.git
cd simple-einet
pip install -e .

Usage Example

The following is a simple usage example of how to create, optimize, and sample from an Einet.

import torch
from simple_einet.layers.distributions.normal import Normal
from simple_einet.einet import Einet
from simple_einet.einet import EinetConfig


if __name__ == "__main__":
    torch.manual_seed(0)

    # Input dimensions
    in_features = 4
    batchsize = 5

    # Create input sample
    x = torch.randn(batchsize, in_features)

    # Construct Einet
    cfg = EinetConfig(
        num_features=in_features,
        depth=2,
        num_sums=2,
        num_channels=1,
        num_leaves=3,
        num_repetitions=3,
        num_classes=1,
        dropout=0.0,
        leaf_type=Normal,
    )
    einet = Einet(cfg)

    # Compute log-likelihoods
    lls = einet(x)
    print(f"lls.shape: {lls.shape}")
    print(f"lls: \n{lls}")

    # Optimize Einet parameters (weights and leaf params)
    optim = torch.optim.Adam(einet.parameters(), lr=0.001)

    for _ in range(1000):
        optim.zero_grad()

        # Forward pass: compute log-likelihoods
        lls = einet(x)

        # Backprop negative log-likelihood loss
        nlls = -1 * lls.sum()
        nlls.backward()

        # Update weights
        optim.step()

    # Construct samples
    samples = einet.sample(2)
    print(f"samples.shape: {samples.shape}")
    print(f"samples: \n{samples}")

Citing EinsumNetworks

If you use this software, please cite it as below.

@software{braun2021simple-einet,
author = {Braun, Steven},
title = {{Simple-einet: An EinsumNetworks Implementation}},
url = {https://github.com/braun-steven/simple-einet},
version = {0.0.1},
}

If you use EinsumNetworks as a model in your publications, please cite our official EinsumNetworks paper.

@inproceedings{pmlr-v119-peharz20a,
  title = {Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits},
  author = {Peharz, Robert and Lang, Steven and Vergari, Antonio and Stelzner, Karl and Molina, Alejandro and Trapp, Martin and Van Den Broeck, Guy and Kersting, Kristian and Ghahramani, Zoubin},
  booktitle = {Proceedings of the 37th International Conference on Machine Learning},
  pages = {7563--7574},
  year = {2020},
  editor = {III, Hal Daumé and Singh, Aarti},
  volume = {119},
  series = {Proceedings of Machine Learning Research},
  month = {13--18 Jul},
  publisher = {PMLR},
  pdf = {http://proceedings.mlr.press/v119/peharz20a/peharz20a.pdf},
  url = {http://proceedings.mlr.press/v119/peharz20a.html},
  code = {https://github.com/cambridge-mlg/EinsumNetworks},
}

Releases

No releases published

Packages

No packages published