Please note that this project has been moved to https://github.com/usnistgov/h5wasm by the author. Development will continue there.
a zero-dependency WebAssembly-powered library for reading and writing HDF5 files from javascript
(built on the HDF5 C API)
import * as hdf5 from "https://cdn.jsdelivr.net/gh/bmaranville/h5wasm@publish/dist/hdf5_hl.js";
let response = await fetch("https://ncnr.nist.gov/pub/ncnrdata/vsans/202003/24845/data/sans59510.nxs.ngv");
let ab = await response.arrayBuffer();
hdf5.FS.writeFile("sans59510.nxs.ngv", new Uint8Array(ab));
// use mode "r" for reading. All modes can be found in hdf5.ACCESS_MODES
let f = new hdf5.File("sans59510.nxs.ngv", "r");
// File {path: "/", file_id: 72057594037927936n, filename: "data.h5", mode: "r"}
The host filesystem is made available through Emscripten "NODERAWFS=1".
Enabling BigInt support may be required.
npm i github:bmaranville/h5wasm.git#publish
node --experimental-wasm-bigint
const hdf5 = require("h5wasm");
let f = new hdf5.File("/home/brian/Downloads/sans59510.nxs.ngv", "r");
/*
File {
path: '/',
file_id: 72057594037927936n,
filename: '/home/brian/Downloads/sans59510.nxs.ngv',
mode: 'r'
}
*/
let f = new hdf5.File("sans59510.nxs.ngv", "r");
// list keys:
f.keys()
// ["entry"]
f.get("entry/instrument").keys()
// ["attenuator","beam","beam_monitor_low","beam_monitor_norm","beam_stop_C2","beam_stop_C3","collimator","converging_pinholes","detector_B","detector_FB","detector_FL","detector_FR","detector_FT","detector_MB","detector_ML","detector_MR","detector_MT","lenses","local_contact","name","sample_aperture","sample_aperture_2","sample_table","source","source_aperture","type"]
let data = f.get("entry/instrument/detector_MR/data")
// Dataset {path: "/entry/instrument/detector_MR/data", file_id: 72057594037927936n}
data.metadata
/*
{
"signed": true,
"cset": -1,
"vlen": false,
"littleEndian": true,
"type": 0,
"size": 4,
"shape": [
48,
128
],
"total_size": 6144
}
*/
// for convenience, these are extracted from metadata:
data.dtype
// "<i"
data.shape
// (2) [48, 128]
// data are loaded into a matching TypedArray in javascript if one exists, otherwise raw bytes are returned (there is no Float16Array, for instance). In this case the matching type is Int32Array
data.value
/*
Int32Array(6144) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]
*/
// take a slice from 0:10 on axis 0, keeping all of axis 1:
// (slicing is done through libhdf5 instead of in the javascript library - should be very efficient)
data.slice([[0,10],[]])
/*
Int32Array(1280) [0, 0, 0, 2, 2, 2, 3, 1, 1, 7, 3, 5, 7, 8, 9, 21, 43, 38, 47, 8, 8, 7, 3, 6, 1, 7, 3, 7, 47, 94, 91, 99, 76, 81, 86, 112, 98, 103, 85, 100, 83, 122, 111, 123, 136, 129, 134, 164, 130, 164, 176, 191, 200, 211, 237, 260, 304, 198, 32, 9, 5, 2, 6, 5, 8, 6, 25, 219, 341, 275, 69, 11, 4, 5, 5, 45, 151, 154, 141, 146, 108, 107, 105, 113, 99, 101, 96, 84, 86, 77, 78, 107, 73, 80, 105, 65, 75, 79, 62, 31, …]
/*
let new_file = hdf5.File("myfile.h5", "w");
new_file.create_group("entry");
// shape and dtype will match input if omitted
new_file.get("entry").create_dataset("auto", [3.1, 4.1, 0.0, -1.0]);
new_file.get("entry/auto").shape
// [4]
new_file.get("entry/auto").dtype
// "<d"
new_file.get("entry/auto").value
// Float64Array(4) [3.1, 4.1, 0, -1]
// make float array instead of double (shape will still match input if it is set to null)
new_file.get("entry").create_dataset("data", [3.1, 4.1, 0.0, -1.0], null, '<f');
new_file.get("entry/data").shape
// [4]
new_file.get("entry/data").value
//Float32Array(4) [3.0999999046325684, 4.099999904632568, 0, -1]
// create a dataset with shape=[2,2]
// The dataset stored in the HDF5 file with the correct shape,
// but no attempt is made to make a 2x2 array out of it in javascript
new_file.get("entry").create_dataset("square_data", [3.1, 4.1, 0.0, -1.0], [2,2], '<d');
new_file.get("entry/square_data").shape
// (2) [2, 2]
new_file.get("entry/square_data").value
//Float64Array(4) [3.1, 4.1, 0, -1]
// create an attribute (creates a VLEN string by default for a string)
new_file.get("entry").create_attribute("myattr", "a string");
Object.keys(new_file.get("entry").attrs)
// ["myattr"]
new_file.get("entry").attrs["myattr"]
// {value: "a string", shape: Array(0), dtype: "S"}
new_file.get("entry").create_attribute("fixed", ["hello", "you"], null, "S5")
new_file.get("entry").attrs["fixed"]
/*
{
"value": [
"hello",
"you"
],
"shape": [
2
],
"dtype": "S5"
}
*/
// close the file - reading and writing will no longer work.
// calls H5Fclose on the file_id.
new_file.close()
One can also open an existing file and write to it:
let f = new hdf5.File("myfile.h5", "a");
f.create_attribute("new_attr", "something wicked this way comes");
f.close()
Optional, to support uploads and downloads
import {uploader, downloader, UPLOADED_FILES} from "https://cdn.jsdelivr.net/gh/bmaranville/h5wasm@publish/dist/file_handlers.js";
//
// Attach to a file input element:
// will save to hdf5.FS (memfs) with the name of the uploaded file
document.getElementById("upload_selector").onchange = uploader;
// file can be found with
let f = new hdf5.File(UPLOADED_FILES[UPLOADED_FILES.length -1], "r");
let new_file = hdf5.File("myfile.h5", "w");
new_file.create_group("entry");
// shape and dtype will match input if omitted
new_file.get("entry").create_dataset("auto", [3.1, 4.1, 0.0, -1.0]);
// this will download a snapshot of the HDF5 in its current state, with the same name
// (in this case, a file named "myfile.h5" would be downloaded)
new_file.download(downloader);