Skip to content

bdilday/mnre

Folders and files

NameName
Last commit message
Last commit date
Apr 8, 2018
Mar 11, 2018
Jan 25, 2018
Mar 10, 2018
Jan 25, 2018
Jan 25, 2018
Jan 25, 2018
Jan 23, 2018
Mar 11, 2018
Mar 11, 2018
Jan 25, 2018

Repository files navigation

mnre

Multinomial Random Effects

Usage

This code solves multinomial mixed effects models.

Installing

devtools::install_github('bdilday/mnre')

Binomial Example

fit a binomial model using a formula interface

library(mnre)
ev = mnre_simulate_multinomial_data_factors(nfct=2, K_class = 2, nlev=50, nobs=20000)
mnre_mod = mnre_fit(y ~ 1 + (1|fct01) + (1|fct02), data=ev$fr, verbose=0)
mnre_mod$theta
[1] 0.9926043 0.9537682

fit a binomial model using lower-level nd_min_fun

library(mnre)
ev = mnre_simulate_multinomial_data_factors(nfct=2, K_class = 2, nlev=50, nobs=20000)
nf = mnre::nd_min_fun(ev)
ans = optim(c(1,1), nf, method = "L-BFGS", lower=1e-8)
print(ans$par)
[1] 0.9926043 0.9537682

Compare to lme4

glmer_mod <- glmer(ev$frm, data=ev$fr, family='binomial', nAGQ=0)
glmer_mod@theta
[1] 0.9925264 0.9537615

Multinomial model

Fit a multinomial model

ev = mnre_simulate_multinomial_data_factors(nfct=1, K_class = 3, nlev=50, nobs=20000)
ev$verbose = 0
nf = mnre::nd_min_fun(ev)
ans = optim(c(1, 1), nf, method = "L-BFGS", lower=1e-8)
print(ans$par)
[1] 0.9351018 1.0758567

Releases

No releases published

Packages

No packages published