Library for controlling through the SPI protocol an 'Analog Devices ADXL345' accelerometer from an MCU flashed with MicroPython (in particular this was tested with a ESP32-WROVER (4MB RAM)).
Methods are optimised for being as fast as possible, trying to reach max available sampling rate (3.2kHz) for this device.
The following wirings refers to the tested setup on an ESP32-WROVER:
ADXL345 Pin name | ESP32 Pin name (number) |
---|---|
Vs | 3v3 |
GND | GND |
CS | vspi cs (D5) |
SCL/SCLK | vspi scl (D18) |
SDO/ALT ADDRESS | vspi miso (D19) |
SDA/SDI/SDO | vspi mosi (D23) |
Consider that at high sampling rates the MCU collects 3_axes x sampling_rate floats per second. This may result in ending the available RAM of MCUs very quickly: set your acquisition time accordingly and clear data arrays when you are done with them.
from ADXL345_spi import ADXL345 as Accelerometer
accelerometer = Accelerometer(spi_bus=2, cs_pin=5, scl_pin=18, sda_pin=23, sdo_pin=19, spi_freq=5_000_000)
accelerometer.init_spi()
assert accelerometer.is_spi_communcation_working(), "SPI communication not working"
accelerometer.set_sampling_rate(1.56) # Hz
accelerometer.set_g_range(2) # max measurable acceleration pm 2g
accelerometer.set_fifo_mode('bypass')
accelerometer.set_power_mode('measure')
buf, T = accelerometer.read_many_xyz(n=1)
accelerometer.set_power_mode('standby')
x, y, z = accelerometer.xyzbytes2g(buf) # convert bytearray in 3 acceleration arrays (x, y, z) in g units
accelerometer.deinit_spi() # this is necessary, otherwise if another SPI is initialized it won't work
from ADXL345_spi import ADXL345 as Accelerometer
accelerometer = Accelerometer(spi_bus=2, cs_pin=5, scl_pin=18, sda_pin=23, sdo_pin=19, spi_freq=5_000_000)
accelerometer.init_spi()
assert accelerometer.is_spi_communcation_working(), "SPI communication not working"
accelerometer.set_sampling_rate(3200)
accelerometer.set_g_range(2)
accelerometer.set_fifo_mode('bypass')
accelerometer.set_power_mode('measure')
buf, T = accelerometer.read_many_xyz(n=10) # reads ten samples for each axis at the requested sampling rate
accelerometer.set_power_mode('standby')
x, y, z = accelerometer.xyzbytes2g(buf) # arrays of length 10, to be associated with the T array that holds the times of the measure of each sample
accelerometer.deinit_spi()
from ADXL345_spi import ADXL345 as Accelerometer
accelerometer = Accelerometer(spi_bus=2, cs_pin=5, scl_pin=18, sda_pin=23, sdo_pin=19, spi_freq=5_000_000)
accelerometer.init_spi()
assert accelerometer.is_spi_communcation_working(), "SPI communication not working"
accelerometer.set_sampling_rate(3200)
accelerometer.set_g_range(2)
accelerometer.set_fifo_mode('bypass')
accelerometer.set_power_mode('measure')
buf, T = accelerometer.read_continuos_xyz(acquisition_time=1.5) # reads samples for 1.5 seconds from each axis at the requested sampling rate
accelerometer.set_power_mode('standby')
x, y, z = accelerometer.xyzbytes2g(buf) # arrays (in principle) of length acquisition_time * sampling_rate
accelerometer.deinit_spi()
The method for reading from fifo is implemented even though it doesn't read more than one row of the fifo in one transaction, making its performances equal to the method reading measures when they are ready. Trying to read more than one row of the fifo in one transaction always resulted in reading following registers instead of other rows of the fifo.
from ADXL345_spi import ADXL345 as Accelerometer
accelerometer = Accelerometer(spi_bus=2, cs_pin=5, scl_pin=18, sda_pin=23, sdo_pin=19, spi_freq=5_000_000)
accelerometer.init_spi()
assert accelerometer.is_spi_communcation_working(), "SPI communication not working"
accelerometer.set_sampling_rate(3200)
accelerometer.set_g_range(2)
accelerometer.set_fifo_mode('stream')
accelerometer.set_power_mode('measure')
buf, T = accelerometer.read_continuos_xyz_fromfifo(acquisition_time=1.5)
accelerometer.set_power_mode('standby')
x, y, z = accelerometer.xyzbytes2g(buf)
accelerometer.deinit_spi()