Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding NXD and NKI example #26

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions nki_university/nki_and_nxd_llama_inference/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# TinyLLama inference with NeuronX Distributed and Neuron Kernel Interface
In this example you can test [TinyLlama](https://huggingface.co/TinyLlama) from Hugging Face on AWS Trainium. This example was built on a trn1.2xlarge instance using this AMI: Deep Learning AMI Neuron (Ubuntu 22.04) 20240927.

This example pulls largely from the Llama2 inference example from NeuronX Distributed available [here](https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/llama2). However, it adds support for 1/ TinyLlama and 2/ Neuron Kernel Interface (NKI).

### Setup
To run this example, first clone the repository with `git clone https://github.com/aws-neuron/nki-samples.git`.

Next, `cd` into `nki_samples/nki_university/nki_and_nxd_llama_inference`.

Then install the requirements with `pip install -r requirements.txt`.

### Download the model

You'll need to download the TinyLlama model from Hugging Face. You can do this through the `transformers` SDK like this.

```
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama_v1.1")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama_v1.1")
```

After that, save the model into a local directory. This needs to be the same directory you set at the top of `run_llama.py`.

```
model.save_pretrained('/home/ubuntu/models/Tiny-Llama')
tokenizer.save_pretrained('/home/ubuntu/models/Tiny-Llama')
```

### Test the script
Once you've installed all the packages and downloaded your model, you should be ready to test the script. This is done with `python run_llama.py`.

This script will take at least 30 minutes to complete because it does the following: 1/ compiles your model 2/ loads to Neuron device 3/ tests on Neuron 4/ compares accuracy 5/ runs benchmark suite.

### Write your NKI kernel
Your NKI kernels can operate like normal Python functions inside of this project, such as within `llama2/neuron_modeling_llama.py`. Your script already has a sample kernel, `nki_tensor_add_`, which simply takes the addition of the hidden and residual states during the forward pass. This is available in `llama2/neuron_modeling_llama.py`. This kernel has been tested and confirmed for both accuracy and performance.


Empty file.
106 changes: 106 additions & 0 deletions nki_university/nki_and_nxd_llama_inference/llama2/llama2_runner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import torch
from llama2.neuron_modeling_llama import (
NeuronLlamaConfig,
NeuronLlamaForCausalLM,
NeuronLlamaModel,
)
from runner import InferenceRunner
from transformers import AutoTokenizer

from neuronx_distributed.parallel_layers.checkpointing import _invoke_preshard_hook
from neuronx_distributed.quantization.quantization_config import QuantizationType
from neuronx_distributed.quantization.quantization_utils import (
quantize_pytorch_model_per_channel_symmetric,
quantize_pytorch_model_per_tensor_symmetric,
)


class LlamaRunner(InferenceRunner):
def load_hf_model(self):
return NeuronLlamaForCausalLM.load_hf_model(self.model_path)

def load_neuron_model_on_cpu(self, max_prompt_length, sequence_length, batch_size, **kwargs):
self.config = self.get_config_for_nxd(
batch_size,
1,
max_prompt_length=max_prompt_length,
sequence_length=sequence_length,
enable_bucketing=False,
**kwargs)
self.config.torch_dtype = torch.float32

neuron_model = NeuronLlamaModel(self.config)

state_dict = NeuronLlamaForCausalLM.get_state_dict(self.model_path, config=self.config)
_invoke_preshard_hook(neuron_model, state_dict)

neuron_model.load_state_dict(state_dict, strict=False)

if self.config.torch_dtype == torch.bfloat16:
neuron_model.bfloat16()

model = NeuronLlamaForCausalLM(None, self.config)
model.context_encoding_model.model = neuron_model
model.token_generation_model.model = neuron_model
return model

def generate_quantized_hf_checkpoints_on_cpu(self, max_prompt_length, sequence_length, batch_size, **kwargs):
config = self.get_config_for_nxd(batch_size, 1, max_prompt_length, sequence_length, **kwargs)
config.torch_dtype = torch.float32

quantized_state_dict = NeuronLlamaForCausalLM.generate_quantized_state_dict(
model_path=self.model_path, config=config
)
return quantized_state_dict

def load_quantized_neuron_model_on_cpu(self, max_prompt_length, sequence_length, batch_size, **kwargs):
model = self.load_neuron_model_on_cpu(max_prompt_length, sequence_length, batch_size, **kwargs)

quantization_type = QuantizationType(kwargs.get("quantization_type", "per_tensor_symmetric"))
if quantization_type == QuantizationType.PER_TENSOR_SYMMETRIC:
return quantize_pytorch_model_per_tensor_symmetric(model, inplace=True)
elif quantization_type == QuantizationType.PER_CHANNEL_SYMMETRIC:
return quantize_pytorch_model_per_channel_symmetric(model, inplace=True)
else:
raise RuntimeError(f"quantization_type: {quantization_type} not supported")

def load_neuron_model(self, traced_model_path):
config = NeuronLlamaConfig.from_pretrained(traced_model_path)
model = NeuronLlamaForCausalLM.from_pretrained("", config)
self.config = config

model.load(traced_model_path)
if config.torch_dtype == torch.bfloat16:
model.bfloat16()

return model

def load_tokenizer(self, padding_side=None):
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
if not hasattr(self.config, 'pad_token_id') or self.config.pad_token_id is None:
# Use eos_token as pad_token which works for both llama2 and llama3
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer.pad_token_id = self.config.pad_token_id
tokenizer.padding_side = padding_side if padding_side else self.get_padding_side()
return tokenizer

def get_config_cls(self):
return NeuronLlamaConfig

def get_model_cls(self):
return NeuronLlamaForCausalLM

def get_padding_side(self):
return "right"

def get_default_hf_generation_config_kwargs(self):
config = super().get_default_hf_generation_config_kwargs()
# set to eos_token_id as that's done in load_tokenizer
config['pad_token_id'] = self.generation_config.eos_token_id

return config


if __name__ == "__main__":
LlamaRunner.cmd_execute()
Loading