If you make use of this code, please cite the following paper (and give us a star ✨):
@InProceedings{Ustun_2023_CVPR,
author = {Ustun, Berkcan and Kaya, Ahmet Kagan and Ayerden, Ezgi Cakir and Altinel, Fazil},
title = {Spectral Transfer Guided Active Domain Adaptation for Thermal Imagery},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2023},
pages = {449-458}
}
This repository contains official implementation of "Spectral Transfer Guided Active Domain Adaptation for Thermal Imagery" paper (accepted to CVPR 2023 Perception Beyond the Visible Spectrum (PBVS) workshop).
- Python 3.7
- Pytorch 1.8.0
- torchvision 0.9
- Numpy 1.20
- Download FLIR ADAS dataset: Link
- Download MS-COCO dataset:
- After you downloaded the datasets, prepare the dataset .txt files similar to the files in 'RGB' folder and put them in that folder.
- Modify the 'ini.config' file.
- To train STGADA, run the command below.
(stgada) $ python run.py
Parameter Name | Type | Definition |
---|---|---|
[path] |
str |
Path to the txt files |
[source] |
str |
Name of the Source dataset |
[target] |
str |
Name of the Target dataset |
[target_test] |
str |
Name of the Target Test dataset |
[lr] |
float |
Learning rate |
[batch] |
int |
Batch size |
[stgada_lambda] |
float |
Lambda parameter |
[stgada_margin] |
float |
Margin parameter |
[l] |
float |
l parameter of FDA (the beta parameter) |
[device] |
int |
GPU device ID |
- Log
We also provide our experiment logs saved in RGB_result/{dataset_source}_{dataset_target}.log
. For example, mscoco_flir.log
and the best model along with the models saved after the active epochs.
This repo is mostly based on: