This Git repository for the official PyTorch implementation of "FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement", accepted by ICASSP 2022.
📜[Full Paper] ▶[Demo] 💿[Checkpoint]
-
Linux or macOS
-
python>=3.6
-
Anaconda or Miniconda
-
NVIDIA GPU + CUDA CuDNN (CPU can also be supported)
Install Anaconda or Miniconda, and then install conda and pip packages:
# Create conda environment
conda create --name speech_enhance python=3.6
conda activate speech_enhance
# Install conda packages
# Check python=3.8, cudatoolkit=10.2, pytorch=1.7.1, torchaudio=0.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
conda install tensorboard joblib matplotlib
# Install pip packages
# Check librosa=0.8
pip install Cython
pip install librosa pesq pypesq pystoi tqdm toml colorful mir_eval torch_complex
# (Optional) If you want to load "mp3" format audio in your dataset
conda install -c conda-forge ffmpeg
Clone the repository:
git clone https://github.com/hit-thusz-RookieCJ/FullSubNet-plus.git
cd FullSubNet-plus
Download the pre-trained checkpoint, and input commands:
source activate speech_enhance
python -m speech_enhance.tools.inference \
-C config/inference.toml \
-M $MODEL_DIR \
-I $INPUT_DIR \
-O $OUTPUT_DIR
git clone https://github.com/hit-thusz-RookieCJ/FullSubNet-plus.git
cd FullSubNet-plus
Please prepare your data in the data dir as like:
- data/DNS-Challenge/DNS-Challenge-interspeech2020-master/
- data/DNS-Challenge/DNS-Challenge-master/
and set the train dir in the script run.sh
.
Then:
source activate speech_enhance
bash run.sh 0 # peprare training list or meta file
Please prepare your test cases dir like: data/test_cases_<name>
, and set the test dir in the script run.sh
.
First, you need to modify the various configurations in config/train.toml
for training.
Then you can run training:
source activate speech_enhance
bash run.sh 1
After training, you can enhance noisy speech. Before inference, you first need to modify the configuration in config/inference.toml
.
You can also run inference:
source activate speech_enhance
bash run.sh 2
Or you can just use inference.sh
:
source activate speech_enhance
bash inference.sh
Calculating bjective metrics (SI_SDR, STOI, WB_PESQ, NB_PESQ, etc.) :
bash metrics.sh
Obtain subjective scores (DNS_MOS):
python ./speech_enhance/tools/dns_mos.py --testset_dir $YOUR_TESTSET_DIR --score_file $YOUR_SAVE_DIR
If you find our work useful in your research, please consider citing:
@inproceedings{chen2022fullsubnet+,
title={FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement},
author={Chen, Jun and Wang, Zilin and Tuo, Deyi and Wu, Zhiyong and Kang, Shiyin and Meng, Helen},
booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7857--7861},
year={2022},
organization={IEEE}
}