Skip to content

Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Notifications You must be signed in to change notification settings

aseuteurideu/LearningNotToReconstructAnomalies

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies"

This is the implementation of the paper "Learning Not to Reconstruct Anomalies" (BMVC 2021). Paper || arxiv || Presentation Video

Dependencies

  • Python 3.6
  • PyTorch = 1.7.0
  • Numpy
  • Sklearn

Datasets

  • USCD Ped2 [dataset]
  • CUHK Avenue [dataset]
  • ShanghaiTech [dataset]
  • CIFAR-100 (for patch based pseudo anomalies)
  • ImageNet (for patch based pseudo anomalies)

Download the datasets into dataset folder, like ./dataset/ped2/, ./dataset/avenue/, ./dataset/shanghai/, ./dataset/cifar100/, ./dataset/imagenet/

Training

git clone https://github.com/aseuteurideu/LearningNotToReconstructAnomalies
  • Training baseline
python train.py --dataset_type ped2
  • Training patch based model
python train.py --dataset_type ped2 --pseudo_anomaly_cifar_inpainting_smoothborder 0.2 --max_size 0.5 --max_move 10
  • Training skip frame based model
python train.py --dataset_type ped2 --pseudo_anomaly_jump_inpainting 0.2 --jump 2 3 4 5

Select --dataset_type from ped2, avenue, or shanghai.

For more details, check train.py

Pre-trained models

  • Model in Table 1
Model Dataset AUC Weight
Baseline Ped2 92.49% [ drive ]
Baseline Avenue 81.47% [ drive ]
Baseline ShanghaiTech 71.28% [ drive ]
Patch based Ped2 94.77% [ drive ]
Patch based Avenue 84.91% [ drive ]
Patch based ShanghaiTech 72.46% [ drive ]
Skip frame based Ped2 96.50% [ drive ]
Skip frame based Avenue 84.67% [ drive ]
Skip frame based ShanghaiTech 75.97% [ drive ]
  • Various patch based models on Ped2 (Fig. 5(c))
Intruder Dataset Patching Technique AUC Weight
CIFAR-100 SmoothMixS 94.77% [ drive ]
ImageNet SmoothMixS 93.34% [ drive ]
ShanghaiTech SmoothMixS 94.74% [ drive ]
Ped2 SmoothMixS 94.15% [ drive ]
CIFAR-100 SmoothMixC 94.22% [ drive ]
CIFAR-100 CutMix 93.54% [ drive ]
CIFAR-100 MixUp-patch 94.52% [ drive ]

Evaluation

  • Test the model
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth
  • Test the model and save result image
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --img_dir folder_path_to_save_image_results
  • Test the model and generate demonstration video frames
python evaluate.py --dataset_type ped2 --model_dir path_to_weight_file.pth --vid_dir folder_path_to_save_video_results

Then compile the frames into video. For example, to compile the first video in ubuntu:

ffmpeg -framerate 10 -i frame_00_%04d.png -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p video_00.mp4

Bibtex

@inproceedings{astrid2021learning,
  title={Learning Not to Reconstruct Anomalies},
  author={Astrid, Marcella and Zaheer, Muhammad Zaigham and Lee, Jae-Yeong and Lee, Seung-Ik},
  booktitle={BMVC},
  year={2021}
}

Acknowledgement

The code is built on top of code provided by Park et al. [ github ] and Gong et al. [ github ]

About

Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages