forked from langchain-ai/langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added embeddings support for ollama (langchain-ai#10124)
- Description: Added support for Ollama embeddings - Issue: the issue # it fixes (if applicable), - Dependencies: N/A - Tag maintainer: for a quicker response, tag the relevant maintainer (see below), - Twitter handle: @herrjemand cc ollama/ollama#436
- Loading branch information
1 parent
48a4efc
commit 5e50b89
Showing
4 changed files
with
458 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "278b6c63", | ||
"metadata": {}, | ||
"source": [ | ||
"# Ollama\n", | ||
"\n", | ||
"Let's load the Ollama Embeddings class." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "0be1af71", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from langchain.embeddings import OllamaEmbeddings" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "2c66e5da", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"embeddings = OllamaEmbeddings()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "01370375", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"text = \"This is a test document.\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a42e4035", | ||
"metadata": {}, | ||
"source": [ | ||
"To generate embeddings, you can either query an invidivual text, or you can query a list of texts." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[-0.09996652603149414,\n", | ||
" 0.015568195842206478,\n", | ||
" 0.17670190334320068,\n", | ||
" 0.16521021723747253,\n", | ||
" 0.21193109452724457]" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"query_result = embeddings.embed_query(text)\n", | ||
"query_result[:5]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[-0.04242777079343796,\n", | ||
" 0.016536075621843338,\n", | ||
" 0.10052520781755447,\n", | ||
" 0.18272875249385834,\n", | ||
" 0.2079043835401535]" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"doc_result = embeddings.embed_documents([text])\n", | ||
"doc_result[0][:5]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "bb61bbeb", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's load the Ollama Embeddings class with smaller model (e.g. llama:7b). Note: See other supported models [https://ollama.ai/library](https://ollama.ai/library)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"id": "a56b70f5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"embeddings = OllamaEmbeddings(model=\"llama2:7b\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"id": "14aefb64", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"text = \"This is a test document.\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"id": "3c39ed33", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"query_result = embeddings.embed_query(text)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"id": "2ee7ce9f-d506-4810-8897-e44334412714", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[-0.09996627271175385,\n", | ||
" 0.015567859634757042,\n", | ||
" 0.17670205235481262,\n", | ||
" 0.16521376371383667,\n", | ||
" 0.21193283796310425]" | ||
] | ||
}, | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"query_result[:5]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "e3221db6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"doc_result = embeddings.embed_documents([text])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"id": "a0865409-3a6d-468f-939f-abde17c7cac3", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[-0.042427532374858856,\n", | ||
" 0.01653730869293213,\n", | ||
" 0.10052604228258133,\n", | ||
" 0.18272635340690613,\n", | ||
" 0.20790338516235352]" | ||
] | ||
}, | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"doc_result[0][:5]" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
}, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.