Skip to content

Commit

Permalink
CassandraCache and CassandraSemanticCache can handle any "Generation" (
Browse files Browse the repository at this point in the history
…langchain-ai#10563)

Hello,
this PR improves coverage for caching by the two Cassandra-related
caches (i.e. exact-match and semantic alike) by switching to the more
general `dumps`/`loads` serdes utilities.

This enables cache usage within e.g. `ChatOpenAI` contexts (which need
to store lists of `ChatGeneration` instead of `Generation`s), which was
not possible as long as the cache classes were relying on the legacy
`_dump_generations_to_json` and `_load_generations_from_json`).

Additionally, a slightly different init signature is introduced for the
cache objects:
- named parameters required for init, to pave the way for easier changes
in the future connect-to-db flow (and tests adjusted accordingly)
- added a `skip_provisioning` optional passthrough parameter for use
cases where the user knows the underlying DB table, etc already exist.

Thank you for a review!
  • Loading branch information
hemidactylus authored Sep 14, 2023
1 parent e1e01d6 commit 49b65a1
Show file tree
Hide file tree
Showing 2 changed files with 96 additions and 16 deletions.
102 changes: 89 additions & 13 deletions libs/langchain/langchain/cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
Returns:
str: Json representing a list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
return json.dumps([generation.dict() for generation in generations])

Expand All @@ -95,6 +97,8 @@ def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
Returns:
RETURN_VAL_TYPE: A list of generations.
Warning: would not work well with arbitrary subclasses of `Generation`
"""
try:
results = json.loads(generations_json)
Expand All @@ -105,6 +109,65 @@ def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
)


def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
"""
Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`
Args:
generations (RETURN_VAL_TYPE): A list of language model generations.
Returns:
str: a single string representing a list of generations.
This function (+ its counterpart `_loads_generations`) rely on
the dumps/loads pair with Reviver, so are able to deal
with all subclasses of Generation.
Each item in the list can be `dumps`ed to a string,
then we make the whole list of strings into a json-dumped.
"""
return json.dumps([dumps(_item) for _item in generations])


def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
"""
Deserialization of a string into a generic RETURN_VAL_TYPE
(i.e. a sequence of `Generation`).
See `_dumps_generations`, the inverse of this function.
Args:
generations_str (str): A string representing a list of generations.
Compatible with the legacy cache-blob format
Does not raise exceptions for malformed entries, just logs a warning
and returns none: the caller should be prepared for such a cache miss.
Returns:
RETURN_VAL_TYPE: A list of generations.
"""
try:
generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
return generations
except (json.JSONDecodeError, TypeError):
# deferring the (soft) handling to after the legacy-format attempt
pass

try:
gen_dicts = json.loads(generations_str)
# not relying on `_load_generations_from_json` (which could disappear):
generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
logger.warning(
f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
)
return generations
except (json.JSONDecodeError, TypeError):
logger.warning(
f"Malformed/unparsable cached blob encountered: '{generations_str}'"
)
return None


class InMemoryCache(BaseCache):
"""Cache that stores things in memory."""

Expand Down Expand Up @@ -733,10 +796,11 @@ class CassandraCache(BaseCache):

def __init__(
self,
session: CassandraSession,
keyspace: str,
session: Optional[CassandraSession] = None,
keyspace: Optional[str] = None,
table_name: str = CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
ttl_seconds: Optional[int] = CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize with a ready session and a keyspace name.
Expand Down Expand Up @@ -767,6 +831,7 @@ def __init__(
keys=["llm_string", "prompt"],
primary_key_type=["TEXT", "TEXT"],
ttl_seconds=self.ttl_seconds,
skip_provisioning=skip_provisioning,
)

def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
Expand All @@ -775,14 +840,19 @@ def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
llm_string=_hash(llm_string),
prompt=_hash(prompt),
)
if item:
return _load_generations_from_json(item["body_blob"])
if item is not None:
generations = _loads_generations(item["body_blob"])
# this protects against malformed cached items:
if generations is not None:
return generations
else:
return None
else:
return None

def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
"""Update cache based on prompt and llm_string."""
blob = _dump_generations_to_json(return_val)
blob = _dumps_generations(return_val)
self.kv_cache.put(
llm_string=_hash(llm_string),
prompt=_hash(prompt),
Expand Down Expand Up @@ -836,13 +906,14 @@ class CassandraSemanticCache(BaseCache):

def __init__(
self,
session: CassandraSession,
keyspace: str,
session: Optional[CassandraSession],
keyspace: Optional[str],
embedding: Embeddings,
table_name: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME,
distance_metric: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC,
score_threshold: float = CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD,
ttl_seconds: Optional[int] = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS,
skip_provisioning: bool = False,
):
"""
Initialize the cache with all relevant parameters.
Expand Down Expand Up @@ -897,6 +968,7 @@ def _cache_embedding(text: str) -> List[float]:
vector_dimension=self.embedding_dimension,
ttl_seconds=self.ttl_seconds,
metadata_indexing=("allow", {"_llm_string_hash"}),
skip_provisioning=skip_provisioning,
)

def _get_embedding_dimension(self) -> int:
Expand All @@ -906,7 +978,7 @@ def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> N
"""Update cache based on prompt and llm_string."""
embedding_vector = self._get_embedding(text=prompt)
llm_string_hash = _hash(llm_string)
body = _dump_generations_to_json(return_val)
body = _dumps_generations(return_val)
metadata = {
"_prompt": prompt,
"_llm_string_hash": llm_string_hash,
Expand Down Expand Up @@ -947,11 +1019,15 @@ def lookup_with_id(
)
if hits:
hit = hits[0]
generations_str = hit["body_blob"]
return (
hit["row_id"],
_load_generations_from_json(generations_str),
)
generations = _loads_generations(hit["body_blob"])
if generations is not None:
# this protects against malformed cached items:
return (
hit["row_id"],
generations,
)
else:
return None
else:
return None

Expand Down
10 changes: 7 additions & 3 deletions libs/langchain/tests/integration_tests/cache/test_cassandra.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def cassandra_connection() -> Iterator[Tuple[Any, str]]:

def test_cassandra_cache(cassandra_connection: Tuple[Any, str]) -> None:
session, keyspace = cassandra_connection
cache = CassandraCache(session, keyspace)
cache = CassandraCache(session=session, keyspace=keyspace)
langchain.llm_cache = cache
llm = FakeLLM()
params = llm.dict()
Expand All @@ -58,7 +58,7 @@ def test_cassandra_cache(cassandra_connection: Tuple[Any, str]) -> None:

def test_cassandra_cache_ttl(cassandra_connection: Tuple[Any, str]) -> None:
session, keyspace = cassandra_connection
cache = CassandraCache(session, keyspace, ttl_seconds=2)
cache = CassandraCache(session=session, keyspace=keyspace, ttl_seconds=2)
langchain.llm_cache = cache
llm = FakeLLM()
params = llm.dict()
Expand All @@ -80,7 +80,11 @@ def test_cassandra_cache_ttl(cassandra_connection: Tuple[Any, str]) -> None:

def test_cassandra_semantic_cache(cassandra_connection: Tuple[Any, str]) -> None:
session, keyspace = cassandra_connection
sem_cache = CassandraSemanticCache(session, keyspace, embedding=FakeEmbeddings())
sem_cache = CassandraSemanticCache(
session=session,
keyspace=keyspace,
embedding=FakeEmbeddings(),
)
langchain.llm_cache = sem_cache
llm = FakeLLM()
params = llm.dict()
Expand Down

0 comments on commit 49b65a1

Please sign in to comment.