Skip to content

Scientific and statistical computing with Rust.

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT
Notifications You must be signed in to change notification settings

al-jshen/compute

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

compute

Crates.io Documentation License

A crate for scientific and statistical computing. For a list of what this crate provides, see FEATURES.md. For more detailed explanations, see the documentation.

To use the latest stable version in your Rust program, add the following to your Cargo.toml file:

// Cargo.toml
[dependencies]
compute = "0.2"

For the latest version, add the following to your Cargo.toml file:

[dependencies]
compute = { git = "https://github.com/al-jshen/compute" }

There are many functions which rely on linear algebra methods. You can either use the provided Rust methods (default), or use BLAS and/or LAPACK by activating the "blas" and/or the "lapack" feature flags in Cargo.toml:

// example with BLAS only
compute = {version = "0.2", features = ["blas"]}

Examples

Statistical distributions

use compute::distributions::*;

let beta = Beta::new(2., 2.);
let betadata = b.sample_n(1000); // vector of 1000 variates

println!("{}", beta.mean()); // analytic mean
println!("{}", beta.var()); // analytic variance
println!("{}", beta.pdf(0.5)); // probability distribution function

let binom = Binomial::new(4, 0.5);

println!("{}", p.sample()); // sample single value
println!("{}", p.pmf(2));  // probability mass function

Linear algebra

use compute::linalg::*;

let x = arange(1., 4., 0.1).ln_1p().reshape(-1, 3);  // automatic shape detection
let y = Vector::from([1., 2., 3.]);  // vector struct
let pd = x.t().dot(x);               // transpose and matrix multiply
let jitter = Matrix::eye(3) * 1e-6;  // elementwise operations
let c = (pd + jitter).cholesky();    // matrix decompositions
let s = c.solve(&y.exp());           // linear solvers
println!("{}", s);

Linear models

use compute::prelude::*;

let x = vec![
    0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00,
    4.25, 4.50, 4.75, 5.00, 5.50,
];
let y = vec![
    0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 1., 1., 1., 1., 1.,
];
let n = y.len();
let xd = design(&x, n);

let mut glm = GLM::new(ExponentialFamily::Bernoulli); // logistic regression
glm.set_penalty(1.);                                  // L2 penalty
glm.fit(&xd, &y, 25).unwrap();                        // with fit scoring algorithm (MLE)
let coef = glm.coef().unwrap();                       // get estimated parameters
let errors = glm.coef_standard_error().unwrap();      // get errors on parameters

println!("{:?}", coef);
println!("{:?}", errors);

Optimization

use compute::optimize::*;

// define a function using a consistent optimization interface
fn rosenbrock<'a>(p: &[Var<'a>], d: &[&[f64]]) -> Var<'a> {
    assert_eq!(p.len(), 2);
    assert_eq!(d.len(), 1);
    assert_eq!(d[0].len(), 2);

    let (x, y) = (p[0], p[1]);
    let (a, b) = (d[0][0], d[0][1]);

    (a - x).powi(2) + b * (y - x.powi(2)).powi(2)
}

// set up and run optimizer
let init = [0., 0.];
let optim = Adam::with_stepsize(5e-4);
let popt = optim.optimize(rosenbrock, &init, &[&[1., 100.]], 10000);

println!("{:?}", popt);

Time series models

use compute::timeseries::*;

let x = vec![-2.584, -3.474, -1.977, -0.226, 1.166, 0.923, -1.075, 0.732, 0.959];

let mut ar = AR::new(1);             // AR(1) model
ar.fit(&x);                          // fit model with Yule-Walker equations
println!("{:?}", ar.coeffs);         // get model coefficients
println!("{:?}", ar.predict(&x, 5)); // forecast 5 steps ahead

Numerical integration

use compute::integrate::*;

let f = |x: f64| x.sqrt() + x.sin() - (3. * x).cos() - x.powi(2);
println!("{}", trapz(f, 0., 1., 100));        // trapezoid integration with 100 segments
println!("{}", quad5(f, 0., 1.));             // gaussian quadrature integration
println!("{}", romberg(f, 0., 1., 1e-8, 10)); // romberg integration with tolerance and max steps

Data summary functions

use compute::statistics::*;
use compute::linalg::Vector;

let x = Vector::from([2.2, 3.4, 5., 10., -2.1, 0.1]);

println!("{}", x.mean());
println!("{}", x.var());
println!("{}", x.max());
println!("{}", x.argmax());

Mathematical and statistical functions

use compute::functions::*;

println!("{}", logistic(4.));
println!("{}", boxcox(5., 2.);      // boxcox transform
println!("{}", digamma(2.));
println!("{}", binom_coeff(10, 4)); // n choose k

About

Scientific and statistical computing with Rust.

Topics

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages