Implementaion of Neural Logic Reinforcement learning and several benchmarks. Neural Logic Reinforcement Learning uses deep reinforcement leanring methods to train a differential indutive logic progamming architecture, obtaining explainable and generalizable policies. Paper accepted by ICML2019.
Developed in python2.7, Linux enviornment.
- numpy
- tensorflow (1.11)
- use main.py to run the experiments
--mode=
to specify the running mode, can be "train" or "generalize", where generalize means to run a generalization test.--task=
to specify the task, can be "stack", "unstack", "on" or "cliffwalking".--algo
to specify agent type, can be "DILP", "NN" or "Random"--name
to specify the id of this run.- for example:
python main.py --mode=train --algo=DILP --task=unstack --name=ICMLtest