Skip to content

ZhengyaoJiang/NLRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Logic Reinforcement Learing

Implementaion of Neural Logic Reinforcement learning and several benchmarks. Neural Logic Reinforcement Learning uses deep reinforcement leanring methods to train a differential indutive logic progamming architecture, obtaining explainable and generalizable policies. Paper accepted by ICML2019.

Enviornments

Developed in python2.7, Linux enviornment.

Dependencies

  • numpy
  • tensorflow (1.11)

User Guide

  • use main.py to run the experiments
  • --mode= to specify the running mode, can be "train" or "generalize", where generalize means to run a generalization test.
  • --task= to specify the task, can be "stack", "unstack", "on" or "cliffwalking".
  • --algo to specify agent type, can be "DILP", "NN" or "Random"
  • --name to specify the id of this run.
  • for example: python main.py --mode=train --algo=DILP --task=unstack --name=ICMLtest

About

Source code of Neural Logic Reinforcement Learning (https://arxiv.org/abs/1904.10729)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published