-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
106 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
\providecommand{\main}{..} | ||
\documentclass[\main/notes.tex]{subfiles} | ||
|
||
\begin{document} | ||
\setcounter{chapter}{4} | ||
\chapter{Trigonometry} | ||
\section{Special Angles} | ||
\begin{center} | ||
\begin{tikzpicture}[scale=5,cap=round,>=latex] | ||
% draw the coordinates | ||
\draw[->] (-1.5cm,0cm) -- (1.5cm,0cm) node[right,fill=white] {$x$}; | ||
\draw[->] (0cm,-1.5cm) -- (0cm,1.5cm) node[above,fill=white] {$y$}; | ||
|
||
% draw the unit circle | ||
\draw[thick] (0cm,0cm) circle(1cm); | ||
|
||
\foreach \x in {0,30,...,360} { | ||
% lines from center to point | ||
\draw[gray] (0cm,0cm) -- (\x:1cm); | ||
% dots at each point | ||
\filldraw[black] (\x:1cm) circle(0.4pt); | ||
% draw each angle in degrees | ||
\draw (\x:0.6cm) node[fill=white] {$\x^\circ$}; | ||
} | ||
|
||
% draw each angle in radians | ||
\foreach \x/\xtext in { | ||
30/\frac{\pi}{6}, | ||
45/\frac{\pi}{4}, | ||
60/\frac{\pi}{3}, | ||
90/\frac{\pi}{2}, | ||
120/\frac{2\pi}{3}, | ||
135/\frac{3\pi}{4}, | ||
150/\frac{5\pi}{6}, | ||
180/\pi, | ||
210/\frac{7\pi}{6}, | ||
225/\frac{5\pi}{4}, | ||
240/\frac{4\pi}{3}, | ||
270/\frac{3\pi}{2}, | ||
300/\frac{5\pi}{3}, | ||
315/\frac{7\pi}{4}, | ||
330/\frac{11\pi}{6}, | ||
360/2\pi} | ||
\draw (\x:0.85cm) node[fill=white] {$\xtext$}; | ||
|
||
\foreach \x/\xtext/\y in { | ||
% the coordinates for the first quadrant | ||
30/\sqrt{3}/1, | ||
45/\sqrt{2}/\sqrt{2}, | ||
60/1/\sqrt{3}, | ||
% the coordinates for the second quadrant | ||
150/-\sqrt{3}/1, | ||
135/-\sqrt{2}/\sqrt{2}, | ||
120/-1/\sqrt{3}, | ||
% the coordinates for the third quadrant | ||
210/-\sqrt{3}/-1, | ||
225/-\sqrt{2}/-\sqrt{2}, | ||
240/-1/-\sqrt{3}, | ||
% the coordinates for the fourth quadrant | ||
330/\sqrt{3}/-1, | ||
315/\sqrt{2}/-\sqrt{2}, | ||
300/1/-\sqrt{3}} | ||
\draw (\x:1.25cm) node[fill=white] {$\left(\xtext,\y\right)$}; | ||
|
||
% draw the horizontal and vertical coordinates | ||
% the placement is better this way | ||
\draw (-1.25cm,0cm) node[above=1pt] {$(-2,0)$} | ||
(1.25cm,0cm) node[above=1pt] {$(2,0)$} | ||
(0cm,-1.25cm) node[fill=white] {$(0,-2)$} | ||
(0cm,1.25cm) node[fill=white] {$(0,2)$}; | ||
\end{tikzpicture} | ||
\end{center} | ||
\section{Identities} | ||
\subsection{Defining Relations} | ||
\begin{alignat*}{2} | ||
\tan \theta &= \frac{\sin\theta}{\cos\theta} \qquad & \cot \theta &= \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}\\ | ||
\sec\theta &= \frac{1}{\cos\theta} \qquad & \csc\theta &= \frac{1}{\sin\theta} | ||
\end{alignat*} | ||
\subsection{Pythagorean Identity} | ||
\begin{align*} | ||
\sin^{2}\theta + \cos^{2}\theta = 1 | ||
\end{align*} | ||
\subsection{Negative Angles} | ||
\begin{alignat*}{3} | ||
\sin(-\theta) &= -\sin\theta \qquad & \cos(-\theta) &= \cos\theta \qquad & \tan(-\theta) = -\tan\theta | ||
\end{alignat*} | ||
\subsection{Sum and Difference} | ||
\begin{alignat*}{2} | ||
\sin(\alpha + \beta) &= \sin\alpha\cos\beta + \cos\alpha\sin\beta \qquad & | ||
\sin(\alpha - \beta) &= \sin\alpha\cos\beta - \cos\alpha\sin\beta\\ | ||
\cos(\alpha + \beta) &= \cos\alpha\cos\beta - \sin\alpha\sin\beta | ||
\end{alignat*} | ||
\subsection{Double Angle Formulae} | ||
\begin{align*} | ||
\sin(2\theta) &= 2\sin\theta\cos\theta\\ | ||
\cos(2\theta) &= \cos^{2}\theta - \sin^{2}\theta\\ | ||
&= 2\cos^{2}\theta - 1\\ | ||
&= 1 - 2\sin^{2}\theta | ||
\end{align*} | ||
|
||
\ifSubfilesClassLoaded{% | ||
\vbox{\rulechapterend}}{\vspace*{\parskip}\rulebookend} | ||
|
||
\end{document} |