Skip to content

SirBob01/HyperNEAT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperNEAT

C++ ES-HyperNEAT algorithm implementation

Algorithm

The HyperNEAT algorithm uses evolution to train neural networks. Genome neural networks, known as Compositional Pattern-Producing Networks (CPPN), are randomly generated via mutations and crossover. This is then used to "paint" a pattern on a 4-dimensional hypercube, which represents the weights and biases of the resulting phenome neural network.

The phenome neural network is what is actually evaluated when running a simulation.

Through the process of Darwinian natural selection, the genomes will eventually converge towards creating a network that can maximize the fitness function and solve the task.

Build

To build the demo executables

  1. Create a build folder and go to it mkdir build && cd build
  2. Run cmake .. && make -j 3

License

Code and documentation Copyright (c) 2022 Keith Leonardo

Code released under the MIT License.

Releases

No releases published

Packages

No packages published

Languages