Skip to content

Sardhendu/Data-Science-Projects

Repository files navigation

Data-Science-Projects:

Techniques:

Feature Selection:

  • PCA (Principal Component Analysis)
  • AIC (Akiake Information criterion)
  • BIC (Bayesian Information criterion)
  • LASSO (Least Absolute Shrinkage and Selection Operator)
  1. Credit Card Fraud Detection: {Python: Sckit-learn, Tensorflow, R} (Ongoing
  • Models:
    1. Random Forest
    2. Gradient Boosting
    3. XGBoost
    4. Deep Neural Nets
    5. Autoencoders
    6. Bayesian Methods
  1. Diabetic-Readmission Analysis: {PySpark, R}
  • Classification:
    1. GLM {RIDGE/LASSO/ELNET}
    2. Random Forests
  1. Crime Prediction: {Python: Sckit-learn}
  • Regression:

    1. Linear Regression
    2. Polynomial Regression
  • Classification:

    1. Decision Trees
    2. Gaussian Naive Bayes
    3. Support Vector Machines, Linear SVC, POLY, RBF
    4. Random Forests
  1. Credit default: {R}:
  • Classification:
    1. Logistic Regression (GLM): RIDGE/LASSO
    2. Naive Bayes
    3. Decision Trees
    4. Random Forests
  1. Loan Default: {R}
  • Classification:
    1. GLM (Generalized Linear Model)

--> Data {source URL} : 1. http://archive.ics.uci.edu/ml/ 2. https://www.lendingclub.com/info/download-data.action