cnn.py: Discriminative CNN model for payload classification.
dataset.py:
ContextPCAPDataset: class for PCAP dataset (CIC, UNSW, etc.). Inherits from data_structures/dataset.py:NetflowDataset.
ContextPCAPTorchDataset: class for PyTorch DataLoader.
experiment.py:
ContextPCAPExperiment: class for experiment (Baseline, OOD, etc.). Inherits from data_structures/dataset.py:NetflowExperiment.
fnn.py: Descriminative FNN model for payload classification.
preproces.py: Functions to transform PCAP + flow files into usable datasets.
transformer.py: Descriminative Transformer model for payload classification.
dataset.py:
NetflowDataset: parent class for othery types of datasets (ContextPCAP, SequencePCAP, etc.).
experiment.py:
NetflowExperiment: parent class that contains functions for training, inference, OOD experiments.
network_model.py:
NetworkModel: wrapper class for training/inference/feature extraction.
util.py: Miscellaneous parsing functions.
iaf.py:
IAFDataset: A normalizing flows implementation that allows for model distributions.