-
Notifications
You must be signed in to change notification settings - Fork 397
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'QData:master' into master
- Loading branch information
Showing
6 changed files
with
250 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
""" | ||
BERTScoreMetric class: | ||
------------------------------------------------------- | ||
Class for calculating BERTScore on AttackResults | ||
""" | ||
|
||
from textattack.attack_results import FailedAttackResult, SkippedAttackResult | ||
from textattack.constraints.semantics import BERTScore | ||
from textattack.metrics import Metric | ||
|
||
|
||
class BERTScoreMetric(Metric): | ||
def __init__(self, **kwargs): | ||
self.use_obj = BERTScore( | ||
min_bert_score=0.5, model_name="microsoft/deberta-large-mnli", num_layers=18 | ||
) | ||
self.original_candidates = [] | ||
self.successful_candidates = [] | ||
self.all_metrics = {} | ||
|
||
def calculate(self, results): | ||
"""Calculates average BERT score on all successfull attacks. | ||
Args: | ||
results (``AttackResult`` objects): | ||
Attack results for each instance in dataset | ||
Example:: | ||
>> import textattack | ||
>> import transformers | ||
>> model = transformers.AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> tokenizer = transformers.AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer) | ||
>> attack = textattack.attack_recipes.DeepWordBugGao2018.build(model_wrapper) | ||
>> dataset = textattack.datasets.HuggingFaceDataset("glue", "sst2", split="train") | ||
>> attack_args = textattack.AttackArgs( | ||
num_examples=1, | ||
log_to_csv="log.csv", | ||
checkpoint_interval=5, | ||
checkpoint_dir="checkpoints", | ||
disable_stdout=True | ||
) | ||
>> attacker = textattack.Attacker(attack, dataset, attack_args) | ||
>> results = attacker.attack_dataset() | ||
>> bertscorem = textattack.metrics.quality_metrics.BERTScoreMetric().calculate(results) | ||
""" | ||
|
||
self.results = results | ||
|
||
for i, result in enumerate(self.results): | ||
if isinstance(result, FailedAttackResult): | ||
continue | ||
elif isinstance(result, SkippedAttackResult): | ||
continue | ||
else: | ||
self.original_candidates.append(result.original_result.attacked_text) | ||
self.successful_candidates.append(result.perturbed_result.attacked_text) | ||
|
||
sbert_scores = [] | ||
for c in range(len(self.original_candidates)): | ||
sbert_scores.append( | ||
self.use_obj._sim_score( | ||
self.original_candidates[c], self.successful_candidates[c] | ||
) | ||
) | ||
|
||
self.all_metrics["avg_attack_bert_score"] = round( | ||
sum(sbert_scores) / len(sbert_scores), 2 | ||
) | ||
|
||
return self.all_metrics |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
""" | ||
MeteorMetric class: | ||
------------------------------------------------------- | ||
Class for calculating METEOR score on AttackResults | ||
""" | ||
|
||
import nltk | ||
|
||
from textattack.attack_results import FailedAttackResult, SkippedAttackResult | ||
from textattack.metrics import Metric | ||
|
||
|
||
class MeteorMetric(Metric): | ||
def __init__(self, **kwargs): | ||
self.original_candidates = [] | ||
self.successful_candidates = [] | ||
self.all_metrics = {} | ||
|
||
def calculate(self, results): | ||
"""Calculates average Metero score on all successfull attacks. | ||
Args: | ||
results (``AttackResult`` objects): | ||
Attack results for each instance in dataset | ||
Example:: | ||
>> import textattack | ||
>> import transformers | ||
>> model = transformers.AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> tokenizer = transformers.AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer) | ||
>> attack = textattack.attack_recipes.DeepWordBugGao2018.build(model_wrapper) | ||
>> dataset = textattack.datasets.HuggingFaceDataset("glue", "sst2", split="train") | ||
>> attack_args = textattack.AttackArgs( | ||
num_examples=1, | ||
log_to_csv="log.csv", | ||
checkpoint_interval=5, | ||
checkpoint_dir="checkpoints", | ||
disable_stdout=True | ||
) | ||
>> attacker = textattack.Attacker(attack, dataset, attack_args) | ||
>> results = attacker.attack_dataset() | ||
>> sbertm = textattack.metrics.quality_metrics.MeteorMetric().calculate(results) | ||
""" | ||
|
||
self.results = results | ||
|
||
for i, result in enumerate(self.results): | ||
if isinstance(result, FailedAttackResult): | ||
continue | ||
elif isinstance(result, SkippedAttackResult): | ||
continue | ||
else: | ||
self.original_candidates.append( | ||
result.original_result.attacked_text.text | ||
) | ||
self.successful_candidates.append( | ||
result.perturbed_result.attacked_text.text | ||
) | ||
|
||
meteor_scores = [] | ||
for c in range(len(self.original_candidates)): | ||
meteor_scores.append( | ||
nltk.translate.meteor( | ||
[nltk.word_tokenize(self.original_candidates[c])], | ||
nltk.word_tokenize(self.successful_candidates[c]), | ||
) | ||
) | ||
|
||
self.all_metrics["avg_attack_meteor_score"] = round( | ||
sum(meteor_scores) / len(meteor_scores), 2 | ||
) | ||
|
||
return self.all_metrics |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
""" | ||
USEMetric class: | ||
------------------------------------------------------- | ||
Class for calculating SentenceBERT similarity on AttackResults | ||
""" | ||
|
||
from textattack.attack_results import FailedAttackResult, SkippedAttackResult | ||
from textattack.constraints.semantics.sentence_encoders import BERT | ||
from textattack.metrics import Metric | ||
|
||
|
||
class SBERTMetric(Metric): | ||
def __init__(self, **kwargs): | ||
self.use_obj = BERT(model_name="all-MiniLM-L6-v2", metric="cosine") | ||
self.original_candidates = [] | ||
self.successful_candidates = [] | ||
self.all_metrics = {} | ||
|
||
def calculate(self, results): | ||
"""Calculates average Sentence BERT similarity on all successfull | ||
attacks. | ||
Args: | ||
results (``AttackResult`` objects): | ||
Attack results for each instance in dataset | ||
Example:: | ||
>> import textattack | ||
>> import transformers | ||
>> model = transformers.AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> tokenizer = transformers.AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | ||
>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer) | ||
>> attack = textattack.attack_recipes.DeepWordBugGao2018.build(model_wrapper) | ||
>> dataset = textattack.datasets.HuggingFaceDataset("glue", "sst2", split="train") | ||
>> attack_args = textattack.AttackArgs( | ||
num_examples=1, | ||
log_to_csv="log.csv", | ||
checkpoint_interval=5, | ||
checkpoint_dir="checkpoints", | ||
disable_stdout=True | ||
) | ||
>> attacker = textattack.Attacker(attack, dataset, attack_args) | ||
>> results = attacker.attack_dataset() | ||
>> sbertm = textattack.metrics.quality_metrics.SBERTMetric().calculate(results) | ||
""" | ||
|
||
self.results = results | ||
|
||
for i, result in enumerate(self.results): | ||
if isinstance(result, FailedAttackResult): | ||
continue | ||
elif isinstance(result, SkippedAttackResult): | ||
continue | ||
else: | ||
self.original_candidates.append(result.original_result.attacked_text) | ||
self.successful_candidates.append(result.perturbed_result.attacked_text) | ||
|
||
sbert_scores = [] | ||
for c in range(len(self.original_candidates)): | ||
sbert_scores.append( | ||
self.use_obj._sim_score( | ||
self.original_candidates[c], self.successful_candidates[c] | ||
).item() | ||
) | ||
|
||
self.all_metrics["avg_attack_sentence_bert_similarity"] = round( | ||
sum(sbert_scores) / len(sbert_scores), 2 | ||
) | ||
|
||
return self.all_metrics |