Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support sugar crepe for compositionality evaluation #102

Merged
merged 4 commits into from
Jul 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,23 @@ For Flickr-8k (zero-shot retrieval)
- `clip_benchmark eval --model xlm-roberta-base-ViT-B-32 --pretrained laion5b_s13b_b90k --dataset=flickr8k --output=result.json --batch_size=64 --language=<LANG>`, where `<LANG>` can be among `en` (english), `zh` (chinese).


### Compositionality evaluation


For [Sugar Crepe](https://github.com/RAIVNLab/sugar-crepe):


`clip_benchmark eval --model ViT-B-32 --pretrained laion400m_e32 --dataset=sugar_crepe/<TASK> --output=result.json`

where `<TASK>` can be among `"add_att"`, `add_obj``, `replace_att`, `replace_obj`, `replace_rel`, `swap_att`, `swap_obj`.
To evaluate on all the tasks together, you can do:


`clip_benchmark eval --model ViT-B-32 --pretrained laion400m_e32 --dataset=sugar_crepe --output=result.json`




### Webdataset example

Here is an example on how to run it on [webdatasets](https://github.com/webdataset/webdataset).
Expand Down Expand Up @@ -334,6 +351,7 @@ python setup.py install
- Thanks to [SLIP](https://github.com/facebookresearch/SLIP) authors, some zero-shot templates and classnames are from there.
- Thanks to [Wise-ft](https://github.com/mlfoundations/wise-ft) authors, Imagenet robustness datasets code is adapted from there
- Thanks to [LiT](https://arxiv.org/abs/2111.07991.pdf) authors, some zero-shot templates and classnames of VTAB datasets are from there.
- Thanks to [Sugar Crepe](https://github.com/RAIVNLab/sugar-crepe) authors for compositionality tasks evaluation on COCO
- Thanks to [Babel ImageNet](https://github.com/gregor-ge/Babel-ImageNet) authors for multilingual evaluation of ImageNet-1k zero-shot classification.
- Thanks to [ImageNet-W](https://github.com/facebookresearch/Whac-A-Mole) authors for ImageNet-W evaluation
- Thanks to [CuPL](https://github.com/sarahpratt/CuPL) for CuPL prompts.
Expand Down
11,926 changes: 8,057 additions & 3,869 deletions benchmark/results.ipynb

Large diffs are not rendered by default.

12 changes: 10 additions & 2 deletions clip_benchmark/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from copy import copy
import os
from clip_benchmark.datasets.builder import build_dataset, get_dataset_collate_fn, get_dataset_default_task, dataset_collection, get_dataset_collection_from_file
from clip_benchmark.metrics import zeroshot_classification, zeroshot_retrieval, linear_probe, captioning
from clip_benchmark.metrics import image_caption_selection, zeroshot_classification, zeroshot_retrieval, linear_probe, captioning
from clip_benchmark.model_collection import get_model_collection_from_file, model_collection
from clip_benchmark.models import load_clip, MODEL_TYPES

Expand All @@ -22,7 +22,7 @@ def get_parser_args():
parser_eval.add_argument('--model', type=str, default="ViT-B-32-quickgelu", help="Model architecture to use from OpenCLIP")
parser_eval.add_argument('--pretrained', type=str, default="laion400m_e32", help="Model checkpoint name to use from OpenCLIP")
parser_eval.add_argument('--pretrained_model', type=str, default="", nargs="+", help="Pre-trained model(s) to use. Can be the full model name where `model` and `pretrained` are comma separated (e.g., --pretrained_model='ViT-B-32-quickgelu,laion400m_e32'), a model collection name ('openai' or 'openclip_base' or 'openclip_multilingual' or 'openclip_all'), or path of a text file where each line is a model fullname where model and pretrained are comma separated (e.g., ViT-B-32-quickgelu,laion400m_e32). --model and --pretrained are ignored if --pretrained_model is used.")
parser_eval.add_argument('--task', type=str, default="auto", choices=["zeroshot_classification", "zeroshot_retrieval", "linear_probe", "captioning", "auto"], help="Task to evaluate on. With --task=auto, the task is automatically inferred from the dataset.")
parser_eval.add_argument('--task', type=str, default="auto", choices=["zeroshot_classification", "zeroshot_retrieval", "linear_probe", "captioning", "image_caption_selection", "auto"], help="Task to evaluate on. With --task=auto, the task is automatically inferred from the dataset.")
parser_eval.add_argument('--no_amp', action="store_false", dest="amp", default=True, help="whether to use mixed precision")
parser_eval.add_argument('--num_workers', default=4, type=int)
parser_eval.add_argument('--recall_k', default=[5], type=int, help="for retrieval, select the k for Recall@K metric. ", nargs="+",)
Expand Down Expand Up @@ -245,6 +245,14 @@ def run(args):
device=args.device,
amp=args.amp
)
elif task == "image_caption_selection":
metrics = image_caption_selection.evaluate(
model,
dataloader,
tokenizer,
device=args.device,
amp=args.amp,
)
elif task == "linear_probe":
# we also need the train split for linear probing.
train_dataset = build_dataset(
Expand Down
Loading