This repo contains the official implementation for Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition. The paper is accepted to DAGM / GCPR 2023.
We use the same prerequisites as CTR-GCN
- Python >= 3.6
- PyTorch >= 1.1.0
- PyYAML, tqdm, tensorboardX
Further dependencies:
- Run
pip install -r requirements.txt
- Run
pip install -e torchlight
To install Torchlight:
cd ../graph/torchlight; python setup.py install
cd ../torchlight; python setup.py install
pip install -e torchlight
-
NTU RGB+D 120 Action Recognition Dataset: https://github.com/shahroudy/NTURGB-D
-
First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations: https://guiggh.github.io/publications/first-person-hands/
- Select the config file depending on which dataset and modality you are interested in.
- Select the model that you are interested in running. You can create your own model files under
./model
.
# Example: training model LSHT_4 on NTU RGB+D 120 on the cross-subject dataset using the joint modality with GPU 0
python main.py --config config/nturgbd120-cross-subject/default.yaml --model model.LSHT_4.Model --work-dir work_dir/ntu120/csub/LSHT --device 0
- To test a trained model saved in <work_dir>, run this command:
python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0
- To ensemble the results of different modalities, run
python ensemble.py --datasets ntu120/xsub --joint-dir work_dir/ntu120/csub/LSHT_4 --bone-dir work_dir/ntu120/csub/LSHT_4_bone --joint-motion-dir work_dir/ntu120/csub/LSHT_4_vel --bone-motion-dir work_dir/ntu120/csub/LSHT_4_bone_vel
- To calculate hand accuracy, run
python hand_action_acc.py --datasets ntu120/xsub --acc-dir work_dir/ntu120/csub/LSHT_4 --best_ep 64
This repo is based on CTR-GCN. The data processing is borrowed from SGN and HCN.
Thank you to the original authors for their work!
Please cite our paper if you find it useful:
@article{prasse2023local,
title={Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition},
author={Prasse, Katharina and Jung, Steffen and Zhou, Yuxuan and Keuper, Margret},
journal={arXiv preprint arXiv:2308.10557},
year={2023}
}
For any questions, feel free to contact: [email protected]