Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Performance problem with interpolate #47

Open
KristofferC opened this issue Nov 2, 2018 · 9 comments
Open

Performance problem with interpolate #47

KristofferC opened this issue Nov 2, 2018 · 9 comments
Assignees

Comments

@KristofferC
Copy link
Contributor

KristofferC commented Nov 2, 2018

The current interpolate has a bit too much overhead to be acceptable

For example

X = Dict(
    1 => [0.0, 0.0, 0.0],
    2 => [1.0, 0.0, 0.0],
    3 => [1.0, 1.0, 0.0],
    4 => [0.0, 1.0, 0.0],
    5 => [0.0, 0.0, 1.0],
    6 => [1.0, 0.0, 1.0],
    7 => [1.0, 1.0, 1.0],
    8 => [0.0, 1.0, 1.0])

u = Dict(
    1 => [0.0, 0.0, 0.0],
    2 => [-1/3, 0.0, 0.0],
    3 => [-1/3, -1/3, 0.0],
    4 => [0.0, -1/3, 0.0],
    5 => [0.0, 0.0, 1.0],
    6 => [-1/3, 0.0, 1.0],
    7 => [-1/3, -1/3, 1.0],
    8 => [0.0, -1/3, 1.0])

element = Element(Hex8, (1, 2, 3, 4, 5, 6, 7, 8))
update!(element, "geometry", 0.0 => X)
update!(element, "displacement", 0.0 => u)
update!(element, "youngs modulus", 288.0)
update!(element, "poissons ratio", 1/3)

ip = get_integration_points(element)

using BenchmarkTools

Benchmarking this gives

julia> @btime element("youngs modulus", $ip, 1.0)
  87.709 ns (2 allocations: 32 bytes)

This is a bit long and there are two allocations.

I tried to store the field using two vectors, instead of a dictionary with the assumption that the number of keys are small with moderate success. Using d54d5d3 I got

julia> @btime element("youngs modulus", $ip, 1.0)
  65.823 ns (2 allocations: 32 bytes)
@ahojukka5
Copy link
Member

So. What is happening. Looking at fields.jl, there is a function interpolate taking input arguments field and time, and for DCTI field it just returns field.data.

julia> field_ = element["youngs modulus"]
julia> @btime FEMBase.interpolate($field_, 0.0)
  1.099 ns (0 allocations: 0 bytes)

When looking elements.jl, there is a function interpolate_field, taking element, field, ip, and time as input arguments.

julia> @btime FEMBase.interpolate_field($element, $field_, $ip, 1.0)
  1.466 ns (0 allocations: 0 bytes)

The actual function which gets triggered, is interpolate(element, field_name, ip, time), shown here. It just finds a correct field from element, given field_name, and runs interpolate_field described above.

function interpolate(element::Element, field_name, ip, time)
    field = element[field_name]
    return interpolate_field(element, field, ip, time)
end
julia> @btime FEMBase.interpolate($element, "youngs modulus", $ip, 1.0)
  56.816 ns (2 allocations: 32 bytes)

It looks that the problem is with abstract type AbstractField, which is used in the definition of Element. If we look the following simplified definition of Element:

abstract type AbstractElement end

struct NewElement1 <: AbstractElement
    fields :: Dict{String, DCTI{Float64}}
end

struct NewElement2 <: AbstractElement
    fields :: Dict{String, AbstractField}
end

function FEMBase.interpolate_field(element::AbstractElement, field, ip, time)
    return field.data
end

function FEMBase.interpolate(element::AbstractElement, field_name, ip, time)
    field = element.fields[field_name]
    return FEMBase.interpolate_field(element, field, ip, time)
end

element1 = NewElement1(Dict("youngs modulus" => field_))
element2 = NewElement2(Dict("youngs modulus" => field_))
@btime interpolate($element1, "youngs modulus", $ip, 1.0)
@btime interpolate($element2, "youngs modulus", $ip, 1.0)

Results the following:

  28.957 ns (0 allocations: 0 bytes)
  52.417 ns (1 allocation: 16 bytes)

(Btw, I think we should have AbstractElement in FEMBase ...)

The good question is how do we implement fields to an element in an efficient way so that Element is using only concrete types? Correct me if I'm wrong in my conclusion but it looks that the only way to get rid of memory allocation is to use concrete type in fields set.

By the way, there has been some discussion should we use symbols or strings as field names. Clearly, symbol would be a better in the sense of performance:

struct NewElement3 <: AbstractElement
    fields :: Dict{Symbol, DCTI{Float64}}
end
element3 = NewElement3(Dict(:youngs_modulus => field_))
@btime interpolate($element3, :youngs_modulus, $ip, 1.0)

results

  11.729 ns (0 allocations: 0 bytes)

@ahojukka5
Copy link
Member

I did some further studies in this framework, here it comes.

struct NewElement4 <: AbstractElement
    fields :: Dict{Symbol, AbstractField}
end
element4 = NewElement4(Dict(:youngs_modulus => field_))
@btime interpolate($element4, :youngs_modulus, $ip, 1.0)

# output

  30.424 ns (1 allocation: 16 bytes)

Just for comparison, we get 20 ns away from dictionary lookup time just by changing the key type of dictionary from a string to a symbol, so for sure this is what should be in future.

struct NewElement5{T<:AbstractField} <: AbstractElement
    fields :: Dict{Symbol, T}
end
element5 = NewElement5(Dict(:youngs_modulus => field_))

# output

  11.729 ns (0 allocations: 0 bytes)

Templating Element by field type naturally solves the memory allocation issue, but is not practical since we need to have the ability to store a different kind of fields, not just one kind.

So what about, if we have several field sets in element?

struct NewElement7 <: AbstractElement
    dcti_fields :: Dict{Symbol, DCTI}
    dvti_fields :: Dict{Symbol, DVTI}
end

struct NewElement8 <: AbstractElement
    dcti_fields :: Dict{Symbol, DCTI{Float64}}
    dvti_2_fields :: Dict{Symbol, DVTI{2, Vector{Float64}}}
    other_fields :: Dict{Symbol, AbstractField}
end

function interpolate_dcti(element::AbstractElement, field_name, ip, time)
    return element.dcti_fields[field_name].data
end

function interpolate_dvti(element::AbstractElement, field_name, ip, time)
    return element.dvti_fields[field_name].data
end

function interpolate_dvti_2(element::AbstractElement, field_name, ip, time)
    return element.dvti_2_fields[field_name].data
end

function interpolate_other(element::AbstractElement, field_name, ip, time)
    return element.other_fields[field_name].data
end

u = Dict(:displacement => DVTI([1.0, 2.0], [3.0, 4.0]))
T = Dict(:temperature => DVTI(1.0, 2.0))
element7 = NewElement7(Dict(:youngs_modulus => field_), u)
element8 = NewElement8(Dict(:youngs_modulus => field_), u, T)

println("Element 7")
@btime interpolate_dcti($element7, :youngs_modulus, $ip, 1.0)
@btime interpolate_dvti($element7, :displacement, $ip, 1.0)
println("Element 8")
@btime interpolate_dcti($element8, :youngs_modulus, $ip, 1.0)
@btime interpolate_dvti_2($element8, :displacement, $ip, 1.0)
@btime interpolate_other($element8, :temperature, $ip, 1.0)

# output

Element 7
  30.790 ns (1 allocation: 16 bytes)
  21.993 ns (0 allocations: 0 bytes)
Element 8
  11.363 ns (0 allocations: 0 bytes)
  12.829 ns (0 allocations: 0 bytes)
  31.314 ns (1 allocation: 32 bytes)

Element 8 is performing quite well. So one possible strategy would be to use separate field sets for different kind of fields and write interpolate function for each of them separately. Then we could have some sort of common interpolate function, like

function FEMBase.interpolate(element::NewElement8, field_name, ip, time)
    haskey(element.dcti_fields, field_name) && return interpolate_dcti(element, field_name, ip, time)
    haskey(element.dvti_2_fields, field_name) && return interpolate_dvti_2(element, field_name, ip, time)
    haskey(element.other_fields, field_name) && return interpolate_other(element, field_name, ip, time)
    return nothing
end

@btime interpolate($element8, :youngs_modulus, $ip, 1.0)
@btime interpolate($element8, :displacement, $ip, 1.0)
@btime interpolate($element8, :temperature, $ip, 1.0)

# output

  24.192 ns (1 allocation: 16 bytes)
  29.691 ns (0 allocations: 0 bytes)
  54.593 ns (1 allocation: 32 bytes)

But again, performance is lost because of type instability, we don't know what is the output type of the general interpolate-function. If we want abstraction, this seems to be tradeoff we have to pay. But let's keep on going. What about if we define everything with functions?

struct NewElement9 <: AbstractElement
    fields :: Dict{Symbol, Function}
end

function FEMBase.interpolate(element::NewElement9, field_name, ip, time)
    return element.fields[field_name](ip, time)
end

youngs_modulus(xi, time) = 288.0
displacement(xi, time) = [1.0, 2.0, 3.0, 4.0]
temperature(xi, time) = [1.0, 2.0]
fields = Dict(:youngs_modulus => youngs_modulus, :displacement => displacement, :temperature => temperature)
element9 = NewElement9(fields)
@btime interpolate($element9, :youngs_modulus, $ip, 1.0)
@btime interpolate($element9, :displacement, $ip, 1.0)
@btime interpolate($element9, :temperature, $ip, 1.0)

# output

  27.125 ns (1 allocation: 16 bytes)
  55.021 ns (2 allocations: 128 bytes)
  54.373 ns (2 allocations: 112 bytes)

Ok, that seems to be also a bad idea. I'm open to all ideas about how to get rid of that type instability problem. I think it's still a very important aspect to have an option to make all variables depend on time or spatial coordinates. While in 99.9 % of cases e.g. Young's modulus is constant in a domain, we don't want to restrict it to be like that. We should make it possible to e.g. youngs modulus to follow some function which is defined in both time and spatial domain.

@ahojukka5
Copy link
Member

ahojukka5 commented Apr 9, 2019

Maybe here's the solution. Instead of having Dict{Symbol, AbstractField}, we could have FieldSet <: AbstractFieldSet, defining the fields used in simulation explicitly. This requires defining the fields when creating new elements and fields cannot be added afterward.

abstract type AbstractFieldSet end

struct FieldSet1{N<:Integer} <: AbstractFieldSet
    geometry :: DVTI{N, Vector{Float64}}
    displacement :: DVTV{N, Vector{Float64}}
    youngs_modulus :: DCTI{Float64}
    poissons_ratio :: DCTI{Float64}
end

function FieldSet1()
    z = zeros(3)
    geometry = field((z, z, z ,z))
    displacement = field(0.0 => (z, z, z, z))
    youngs_modulus = field(0.0)
    poissons_ratio = field(0.0)
    return FieldSet1{4}(geometry, displacement, youngs_modulus, poissons_ratio)
end

struct NewElement10{F<:AbstractFieldSet} <: AbstractElement
    fields :: F
end

fs = FieldSet1()
element10 = NewElement10(fs)

#output

NewElement10{FieldSet1}(FieldSet1(DVTI{4,Array{Float64,1}}(([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0])), DVTV{4,Array{Float64,1}}(Pair{Float64,NTuple{4,Array{Float64,1}}}[0.0=>([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0])]), DCTI{Float64}(0.0), DCTI{Float64}(0.0)))

Now, fields can be updated using update!-function like before:

update!(element10.fields.geometry, ([0.0,0.0], [1.0,0.0], [1.0,1.0], [0.0,0.1]))
update!(element10.fields.displacement, 1.0 => ([0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10.fields.youngs_modulus, 288.0)
update!(element10.fields.poissons_ratio, 1/3)
element10.fields.displacement

#output

DVTV{4,Array{Float64,1}}(Pair{Float64,NTuple{4,Array{Float64,1}}}[0.0=>([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]), 1.0=>([0.0, 0.0], [1.0, 0.0], [0.0, 0.0], [0.0, 0.0])])

Now interpolate! is type stable:

function FEMBase.interpolate(element::NewElement10, field_name, ip, time)
    field = getfield(element.fields, field_name)
    return interpolate(field, time)
end

@btime interpolate($element10, :geometry, $ip, $time)
@btime interpolate($element10, :displacement, $ip, $time)
@btime interpolate($element10, :youngs_modulus, $ip, $time)
@btime interpolate($element10, :poissons_ratio, $ip, $time)

# output

  1.466 ns (0 allocations: 0 bytes)
  14.662 ns (0 allocations: 0 bytes)
  1.832 ns (0 allocations: 0 bytes)
  1.099 ns (0 allocations: 0 bytes)

The setup seems to be a bit longer but we can do a macro to make it easier to create new fieldsets. We can also create a "default" field set having the most common fields, so if the field is not defined when creating an element, we use default and preserve backward compatibility.

At least one drawback is that we cannot alter the field configuration inside a simulation, i.e. we need to know beforehand what fields we need before starting a simulation. This could be avoided by having a new style FieldSet and old style Dict{Symbol, AbstractField} in the same Element.

Another thing which is probably changing is how do we make changes for a single component of a vector function. Before we had

update!(element, "displacement 1", 0.0)

and similar, which is not working anymore if displacement is a concrete field of a struct.

@jtveiten
Copy link

jtveiten commented Apr 9, 2019

@ahojukka5 To me this looks like a very good proposal. How much of the existing code will have a problem with your proposal?

@ahojukka5
Copy link
Member

ahojukka5 commented Apr 10, 2019

I think changes would be quite trivial because at the same time we can move from strings to symbols.

abstract type AbstractFieldSet end
abstract type AbstractElement end

struct FieldSet1{N,D} <: AbstractFieldSet
    geometry :: DVTI{N, Vector{Float64}}
    displacement :: DVTV{N, Vector{Float64}}
    youngs_modulus :: DCTI{Float64}
    poissons_ratio :: DCTI{Float64}
end

function FieldSet1(N,D=3)
    geometry = field(ntuple(i->zeros(D), N))
    displacement = field(0.0 => ntuple(i->zeros(D), N))
    youngs_modulus = field(0.0)
    poissons_ratio = field(0.0)
    return FieldSet1{N,D}(geometry, displacement, youngs_modulus, poissons_ratio)
end

struct NewElement10{F<:AbstractFieldSet} <: AbstractElement
    fields :: F
    sfields :: Dict{String, AbstractField} # old-style slow fields
end

fs = FieldSet1(4)
element10 = NewElement10(fs, Dict{String,AbstractField}())

function FEMBase.update!(element::NewElement10, field_name::Symbol, field_data)
    field = getfield(element.fields, field_name)
    update!(field, field_data)
end

function FEMBase.update!(element::NewElement10, field_name::String, field_data)
    if haskey(element.sfields, field_name)
        update!(element.sfields[field_name], field_data)
    else
        element.sfields[field_name] = field(field_data)
    end
end

function FEMBase.interpolate(element::NewElement10, field_name::Symbol, ip, time)
    field = getfield(element.fields, field_name)
    return interpolate(field, time)
end

function FEMBase.interpolate(element::NewElement10, field_name::String, ip, time)
    field = getindex(element.sfields, field_name)
    return interpolate(field, time)
end

update!(element10, :geometry, ([0.0,0.0], [1.0,0.0], [1.0,1.0], [0.0,0.1]))
update!(element10, :displacement, 1.0 => ([0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, :youngs_modulus, 288.0)
update!(element10, :poissons_ratio, 1/3)
update!(element10, "geometry_old", ([0.0,0.0], [1.0,0.0], [1.0,1.0], [0.0,0.1]))
update!(element10, "displacement_old", 0.0 => ([0.0,0.0], [0.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, "displacement_old", 1.0 => ([0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, "youngs_modulus_old", 288.0)
update!(element10, "poissons_ratio_old", 1/3)

ip = (0.0, 0.0)
time = 0.0

println("Old system")
@btime interpolate($element10, "geometry_old", $ip, $time)
@btime interpolate($element10, "displacement_old", $ip, $time)
@btime interpolate($element10, "youngs_modulus_old", $ip, $time)
@btime interpolate($element10, "poissons_ratio_old", $ip, $time)

println("New system")
@btime interpolate($element10, :geometry, $ip, $time)
@btime interpolate($element10, :displacement, $ip, $time)
@btime interpolate($element10, :youngs_modulus, $ip, $time)
@btime interpolate($element10, :poissons_ratio, $ip, $time)

# output

Old system
  43.619 ns (1 allocation: 16 bytes)
  70.994 ns (1 allocation: 16 bytes)
  48.356 ns (2 allocations: 32 bytes)
  48.503 ns (2 allocations: 32 bytes)
New system
  1.466 ns (0 allocations: 0 bytes)
  24.558 ns (0 allocations: 0 bytes)
  1.832 ns (0 allocations: 0 bytes)
  1.099 ns (0 allocations: 0 bytes)

I found yet another advantage. Typically we need certain dimension information almost everywhere, like the number of basis functions or the dimension of the field. Now, these can be templated to FieldSet, and can be used e.g. Tensors.jl or StaticArrays.jl to make a proper size of static vectors/matrices.

We don't necessarily have to deprecate the old system at all. It's still having that advantage over new one that we can dynamically define new fields when necessary. Actually, I think what with a careful design we can use these both parallel such a way that if a field is explicitly defined using a new system, it will be fast and type stable, and if not, it will be the old slower system then. We could have sfields and dfields for statically and dynamically defined fields, perhaps, with corresponding supdate! and sinterpolate, dupdate! and dinterpolate, and then have update! and interpolate which operates on both with a bit more logic involved, i.e. if field is not defined in FieldSet, update! to dictionary, and same way in interpolate, if field is not defined in FieldSet, try to get field from dictionary. This way we get at least almost 100 % backward compatibility.

The only think what is unclear for me is that how do we apply boundary conditions after a change as we have only one predefined field like displacement and we cannot refer to it component-wise displacement $i like before. One possible solution would be to use NaN to indicate components what should not be altered, so for example

julia> update!(element, "displacement 1", 1.0)

what would mean that add prescribed displacement only for component 1 and leave rest as before, the new syntax would be

julia> update!(element, :displacement, [1.0, NaN, NaN])

Actually even this is not a big problem if we leave the old field system, because there we can define fields dynamically without defining them explicitly at the beginning of the simulation. So even that is not a problem.

@jtveiten
Copy link

I think a tuple with the index you want to change and the value clearly states your intentions
julia> update!(element, :displacement, (1, 1.0))
You would be able to keep this type stable?

There may be a case where [1.0, NaN, NaN] could be legal values.

@ahojukka5
Copy link
Member

using FEMBase
using BenchmarkTools

abstract type AbstractFieldSet end
abstract type AbstractElement end

struct FieldSet1{N,D} <: AbstractFieldSet
    geometry :: DVTI{N, Vector{Float64}}
    displacement :: DVTV{N, Vector{Float64}}
    youngs_modulus :: DCTI{Float64}
    poissons_ratio :: DCTI{Float64}
end

function FieldSet1(N,D=3)
    geometry = field(ntuple(i->zeros(D), N))
    displacement = field(0.0 => ntuple(i->zeros(D), N))
    youngs_modulus = field(0.0)
    poissons_ratio = field(0.0)
    return FieldSet1{N,D}(geometry, displacement, youngs_modulus, poissons_ratio)
end

struct NewElement10{F<:AbstractFieldSet} <: AbstractElement
    sfields :: F # static fields given when creating a new element
    dfields :: Dict{Symbol, AbstractField} # dynamics fields created after creating a new element
end

static_fields = FieldSet1(4)
dynamic_fields = Dict{Symbol,AbstractField}()
element10 = NewElement10(static_fields, dynamic_fields)

function has_sfield(element, field_name)
    return isdefined(element.sfields, field_name)
end

function has_dfield(element, field_name)
    return haskey(element.dfields, field_name)
end

function get_sfield(element, field_name)
    return getfield(element.sfields, field_name)
end

function get_dfield(element, field_name)
    return getindex(element.dfields, field_name)
end

function create_dfield!(element, field_name, field_data)
    field_ = field(field_data)
    T = typeof(field_)
    @info("Creating new dfield $field_name of type $T")
    element.dfields[field_name] = field_
end

function update_sfield!(element::NewElement10, field_name, field_data)
    field = get_sfield(element, field_name)
    update!(field, field_data)
end

function update_dfield!(element::NewElement10, field_name, field_data)
    if has_dfield(element, field_name)
        update!(get_dfield(element, field_name), field_data)
    else
        create_dfield!(element, field_name, field_data)
    end
end

function FEMBase.update!(element::NewElement10, field_name::Symbol, field_data)
    if has_sfield(element, field_name)
        update_sfield!(element, field_name, field_data)
    else
        update_dfield!(element, field_name, field_data)
    end
end

sfields = FieldSet1(4,2)
dfields = Dict{Symbol,AbstractField}()
element10 = NewElement10(sfields, dfields)

# update static fields
update!(element10, :geometry, ([0.0,0.0], [1.0,0.0], [1.0,1.0], [0.0,0.1]))
update!(element10, :displacement, 1.0 => ([0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, :youngs_modulus, 288.0)
update!(element10, :poissons_ratio, 1/3)

# update dynamic fields
update!(element10, :dgeometry, ([0.0,0.0], [1.0,0.0], [1.0,1.0], [0.0,0.1]))
update!(element10, :ddisplacement, 0.0 => ([0.0,0.0], [0.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, :ddisplacement, 1.0 => ([0.0,0.0], [1.0,0.0], [0.0,0.0], [0.0,0.0]))
update!(element10, :dyoungs_modulus, 288.0)
update!(element10, :dpoissons_ratio, 1/3)

function interpolate_dfield(element::NewElement10, field_name::Symbol, ip, time)
    field = get_dfield(element, field_name)
    return interpolate(field, time)
end

function interpolate_sfield(element::NewElement10, field_name::Symbol, ip, time)
    field = get_sfield(element, field_name)
    return interpolate(field, time)
end

function FEMBase.interpolate(element::NewElement10, field_name::Symbol, ip, time)
    if has_sfield(element, field_name)
        return interpolate_sfield(element, field_name, ip, time)
    elseif has_dfield(element, field_name)
        return interpolate_dfield(element, field_name, ip, time)
    else
        error("Cannot interpolate from field $field_name: no such field.")
    end
end

ip = (0.0, 0.0)
time = 1.0

println("Interpolate dynamic fields")
@btime interpolate($element10, :dgeometry, $ip, $time)
@btime interpolate($element10, :ddisplacement, $ip, $time)
@btime interpolate($element10, :dyoungs_modulus, $ip, $time)
@btime interpolate($element10, :dpoissons_ratio, $ip, $time)

println("Interpolate static fields")
@btime interpolate($element10, :geometry, $ip, $time)
@btime interpolate($element10, :displacement, $ip, $time)
@btime interpolate($element10, :youngs_modulus, $ip, $time)
@btime interpolate($element10, :poissons_ratio, $ip, $time)
        
println("Interpolate static fields with interpolate_sfield")
@btime interpolate_sfield($element10, :geometry, $ip, $time)
@btime interpolate_sfield($element10, :displacement, $ip, $time)
@btime interpolate_sfield($element10, :youngs_modulus, $ip, $time)
@btime interpolate_sfield($element10, :poissons_ratio, $ip, $time)

# output

Interpolate dynamic fields
  37.022 ns (1 allocation: 16 bytes)
  56.591 ns (1 allocation: 16 bytes)
  42.886 ns (2 allocations: 32 bytes)
  42.886 ns (2 allocations: 32 bytes)
Interpolate static fields
  1.466 ns (0 allocations: 0 bytes)
  19.793 ns (0 allocations: 0 bytes)
  1.466 ns (0 allocations: 0 bytes)
  1.466 ns (0 allocations: 0 bytes)
Interpolate static fields with interpolate_sfield
  1.099 ns (0 allocations: 0 bytes)
  19.060 ns (0 allocations: 0 bytes)
  1.466 ns (0 allocations: 0 bytes)
  1.466 ns (0 allocations: 0 bytes)

Looks like a solution for me.

@ahojukka5
Copy link
Member

ahojukka5 commented Apr 10, 2019

I think a tuple with the index you want to change and the value clearly states your intentions
julia> update!(element, :displacement, (1, 1.0))
You would be able to keep this type stable?

There may be a case where [1.0, NaN, NaN] could be legal values.

Basically, the problem is that the field is just tuple of vectors. For example, for 4-node tetrahedron, it is (u1, u2, u3, u4), where each vector is a length of three. Then, when we interpolate, we just write u = N1*u1 + N2*u2 + N3*u3 + N4*u4, basic fem stuff. The hardness comes from that if we set the value only for the first component of u, say (1, 1.0), what is the value of the rest of the components. One way to do this would be maybe to implement some sort of option to the field itself to say, which components of a vector field are "active". So we could write that update!(element, :displacement, [1.0, 0.0, 0.0]) and element.fields.displacement.active_dofs = (1, ), to indicate that only the first component of results should be taken into account. It's then just a trick in update! to interpret a tuple in terms of the logic.

In a bigger scale, we should implement boundary conditions such a way that we can write equality constraints to couple fields together. Once I had an idea to implement some sort of "symbolic" sparse matrix such a way that instead of giving row and column indices, we give a tuple where the first item is node name/number and the second item is dof name. This can then be "flattened" to a standard sparse matrix, given some mapping. This could in principle solve all the problems related to giving boundary conditions, no matter how complex they are.

@ahojukka5 ahojukka5 self-assigned this Apr 10, 2019
This was referenced Apr 11, 2019
@jtveiten
Copy link

On the same note, you want to state that nodes are equal, node 500 is node 5000 in a different node generator sequence. Sort of same as coupling elements in and out of the system along the timeline.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

3 participants