Skip to content

JuliaApproximation/RecurrenceRelationshipArrays.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RecurrenceRelationshipArrays.jl

A Julia package for caching solutions to recurrence relationships

This package implements arrays associated with recurrence relationships as implemented in RecurrenceRelationships.jl.

Matrix-valued Clenshaw

We can construct multiplication matrices associated with orthogonal polynomials using Clenshaw. The follow represents multiplication by $U_0(x) + 2U_1(x) + 3U_2(x)$ acting on a Chebyshev-U expansion:

julia> using RecurrenceRelationshipArrays, FillArrays, InfiniteArrays

julia> X = SymTridiagonal(Fill(0.0,∞), Fill(1/2,∞)) # Jacobi matrix associated with Chebyshev U
ℵ₀×ℵ₀ SymTridiagonal{Float64, Fill{Float64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}} with indices OneToInf()×OneToInf():
 0.0  0.5                            
 0.5  0.0  0.5                         
     0.5  0.0  0.5                     
         0.5  0.0  0.5                 
             0.5  0.0  0.5             
                 0.5  0.0  0.5        
                     0.5  0.0  0.5     
                                         

julia> rec_U = Fill(2,∞), Zeros{Int}(∞), Ones{Int}(∞); # recurrence coefficients for Chebyshev U

julia> Clenshaw([1,2,3], rec_U..., X)
ℵ₀×ℵ₀ Clenshaw{Float64} with 3 degree polynomial:
 1.0  2.0  3.0                        
 2.0  4.0  2.0  3.0                     
 3.0  2.0  4.0  2.0  3.0                 
     3.0  2.0  4.0  2.0  3.0             
         3.0  2.0  4.0  2.0  3.0         
             3.0  2.0  4.0  2.0  3.0    
                 3.0  2.0  4.0  2.0     
                                         

Minimal solutions to 3-term recurrences

The type RecurrenceArray allows us to represent a minimal solution of a recurrence relationship, i.e., the Stieltjes transform of the orthogonal polynomials. This automatically combines forward and backward recurrence, and so will also will work on the support of the measure. Here is a simple example:

julia> z = 1.0001; # point close to the support

julia> ξ = inv(z + sign(z)sqrt(z^2-1)); # exact formula for Stieltjes transform of sqrt(1-x^2). The next term is ξ^2.

julia> r = RecurrenceArray(z, rec_U, [ξ,ξ^2])
ℵ₀-element RecurrenceArray{Float64, 1, Float64, Fill{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}, Zeros{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}, Ones{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}} with indices OneToInf():
 0.9859575108273005
 0.9721122131567664
 0.9584613379288637
 0.9450021549685467
 0.9317319724392233
 0.9186481363043878
 0.9057480297968131
 

julia> z = [0.1+0im, 1.0001, 10.0]; # can evaluate at multiple points

julia> ξ = @. inv(z + sign(z)sqrt(z^2-1));

julia> RecurrenceArray(z, rec_U, [ξ'; ξ'.^2])
ℵ₀×3 RecurrenceArray{ComplexF64, 2, Vector{ComplexF64}, Fill{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}, Zeros{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}, Ones{Int64, 1, Tuple{InfiniteArrays.OneToInf{Int64}}}} with indices OneToInf()×Base.OneTo(3):
       0.1+0.994987im  0.985958+0.0im    0.0501256+0.0im
     -0.98+0.198997im  0.972112+0.0im   0.00251258+0.0im
    -0.296-0.955188im  0.958461+0.0im  0.000125945-0.0im
    0.9208-0.390035im  0.945002+0.0im   6.31305e-6-0.0im
   0.48016+0.877181im  0.931732+0.0im   3.16446e-7+0.0im
 -0.824768+0.565471im  0.918648+0.0im    1.5862e-8-0.0im
 -0.645114-0.764087im  0.905748+0.0im  7.95095e-10-0.0im
                                      

About

A Julia package for caching solutions to recurrence relationships

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages