Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: [운영체제] 오탈자 수정 #218

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
55 changes: 27 additions & 28 deletions OS/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Part 1-4 운영체제

* [프로세스와 스레드의 차이](#프로세스와-스레드의-차이)
* [멀티스레드](#멀티-스레드)
* [멀티스레드](#멀티스레드)
* 장점과 단점
* 멀티스레드 vs 멀티프로세스
* [스케줄러](#스케줄러)
Expand Down Expand Up @@ -44,64 +44,62 @@

### 프로세스(Process)

프로세스는 실행 중인 프로그램으로 디스크로부터 메모리에 적재되어 CPU 의 할당을 받을 수 있는 것을 말한다. 운영체제로부터 주소 공간, 파일, 메모리 등을 할당받으며 이것들을 총칭하여 프로세스라고 한다. 구체적으로 살펴보면 프로세스는 함수의 매개변수, 복귀 주소와 로컬 변수와 같은 임시 자료를 갖는 프로세스 스택과 전역 변수들을 수록하는 데이터 섹션을 포함한다. 또한 프로세스는 프로세스 실행 중에 동적으로 할당되는 메모리인 힙을 포함한다.
프로세스는 실행 중인 프로그램으로, 디스크로부터 메모리에 적재되어 CPU 의 할당을 받을 수 있는 것을 말한다. 운영체제로부터 주소 공간, 파일, 메모리 등을 할당받으며 이것들을 총칭하여 프로세스라고 한다. 구체적으로 살펴보면 프로세스는 함수의 매개 변수, 복귀 주소, 로컬 변수와 같은 임시 자료를 갖는 프로세스 스택과 전역 변수들을 수록하는 데이터 섹션을 포함한다. 또한 프로세스는 프로세스 실행 중에 동적으로 할당되는 메모리인 힙을 포함한다.

#### 프로세스 제어 블록(Process Control Block, PCB)

PCB 는 특정 **프로세스에 대한 중요한 정보를 저장** 하고 있는 운영체제의 자료구조이다. 운영체제는 프로세스를 관리하기 위해 **프로세스의 생성과 동시에 고유한 PCB 를 생성** 한다. 프로세스는 CPU 를 할당받아 작업을 처리하다가도 프로세스 전환이 발생하면 진행하던 작업을 저장하고 CPU 를 반환해야 하는데, 이때 작업의 진행 상황을 모두 PCB 에 저장하게 된다. 그리고 다시 CPU 를 할당받게 되면 PCB 에 저장되어있던 내용을 불러와 이전에 종료됐던 시점부터 다시 작업을 수행한다.
PCB 는 특정 **프로세스에 대한 중요한 정보를 저장** 하고 있는 운영체제의 자료 구조이다. 운영체제는 프로세스를 관리하기 위해 **프로세스의 생성과 동시에 고유한 PCB 를 생성** 한다. 프로세스는 CPU 를 할당받아 작업을 처리하다가도 프로세스 전환이 발생하면 진행하던 작업을 저장하고 CPU 를 반환해야 하는데, 이때 작업의 진행 상황을 모두 PCB 에 저장하게 된다. 그리고 다시 CPU 를 할당받게 되면 PCB 에 저장되어 있던 내용을 불러와 이전에 종료됐던 시점부터 다시 작업을 수행한다.

_PCB 에 저장되는 정보_

* 프로세스 식별자(Process ID, PID) : 프로세스 식별번호
* 프로세스 식별자(Process ID, PID) : 프로세스 식별 번호
* 프로세스 상태 : new, ready, running, waiting, terminated 등의 상태를 저장
* 프로그램 카운터 : 프로세스가 다음에 실행할 명령어의 주소
* CPU 레지스터
* CPU 스케쥴링 정보 : 프로세스의 우선순위, 스케줄 큐에 대한 포인터 등
* CPU 스케줄링 정보 : 프로세스의 우선순위, 스케줄 큐에 대한 포인터 등
* 메모리 관리 정보 : 페이지 테이블 또는 세그먼트 테이블 등과 같은 정보를 포함
* 입출력 상태 정보 : 프로세스에 할당된 입출력 장치들과 열린 파일 목록
* 어카운팅 정보 : 사용된 CPU 시간, 시간제한, 계정번호
* 어카운팅 정보 : 사용된 CPU 시간, 시간제한, 계정 번호

</br>

### 스레드(Thread)

스레드는 프로세스의 실행 단위라고 할 수 있다. 한 프로세스 내에서 동작되는 여러 실행 흐름으로 프로세스 내의 주소 공간이나 자원을 공유할 수 있다.
스레드는 스레드 ID, 프로그램 카운터, 레지스터 집합, 그리고 스택으로 구성된다. 같은 프로세스에 속한 다른 스레드와 코드, 데이터 섹션, 그리고 열린 파일이나 신호와 같은 운영체제 자원들을 공유한다.
하나의 프로세스를 다수의 실행 단위로 구분하여 자원을 공유하고 자원의 생성과 관리의 중복성을 최소화하여 수행 능력을 향상시키는 것을 멀티스레딩이라고 한다. 이 경우 각각의 스레드는 독립적인 작업을 수행해야 하기 때문에 각자의 스택과 PC 레지스터 값을 갖고 있다.
스레드는 프로세스의 실행 단위라고 할 수 있다. 한 프로세스 내에서 동작하는 여러 실행 흐름으로, 프로세스 내의 주소 공간이나 자원을 공유할 수 있다. 스레드는 스레드 ID, 프로그램 카운터, 레지스터 집합, 그리고 스택으로 구성된다. 같은 프로세스에 속한 다른 스레드와 코드, 데이터 섹션, 그리고 열린 파일이나 신호와 같은 운영체제 자원들을 공유한다. 하나의 프로세스를 다수의 실행 단위로 구분하여 자원을 공유하고 자원의 생성과 관리의 중복성을 최소화하여 수행 능력을 향상하는 것을 멀티스레딩이라고 한다. 이 경우 각각의 스레드는 독립적인 작업을 수행해야 하기 때문에 각자의 스택과 PC 레지스터 값을 갖고 있다.

#### 스택을 스레드마다 독립적으로 할당하는 이유

스택은 함수 호출 시 전달되는 인자, 되돌아갈 주소값 및 함수 내에서 선언하는 변수 등을 저장하기 위해 사용되는 메모리 공간이므로 스택 메모리 공간이 독립적이라는 것은 독립적인 함수 호출이 가능하다는 것이고 이는 독립적인 실행 흐름이 추가되는 것이다. 따라서 스레드의 정의에 따라 독립적인 실행 흐름을 추가하기 위한 최소 조건으로 독립된 스택을 할당한다.

#### PC Register 를 스레드마다 독립적으로 할당하는 이유

PC 값은 스레드가 명령어의 어디까지 수행하였는지를 나타나게 된다. 스레드는 CPU 를 할당받았다가 스케줄러에 의해 다시 선점당한다. 그렇기 때문에 명령어가 연속적으로 수행되지 못하고 어느 부분까지 수행했는지 기억할 필요가 있다. 따라서 PC 레지스터를 독립적으로 할당한다.
PC 값은 스레드가 명령어의 어디까지 수행하였는지를 나타낸다. 스레드는 CPU 를 할당받았다가 스케줄러에 의해 다시 선점당한다. 그렇기 때문에 명령어가 연속적으로 수행되지 못하고, 어느 부분까지 수행했는지 기억할 필요가 있다. 따라서 PC 레지스터를 독립적으로 할당한다.

[뒤로](https://github.com/JaeYeopHan/for_beginner)/[위로](#part-1-4-운영체제)

</br>

---

## 멀티 스레드
## 멀티스레드

### 멀티 스레딩의 장점
### 멀티스레딩의 장점

프로세스를 이용하여 동시에 처리하던 일을 스레드로 구현할 경우 메모리 공간과 시스템 자원 소모가 줄어들게 된다. 스레드 간의 통신이 필요한 경우에도 별도의 자원을 이용하는 것이 아니라 전역 변수의 공간 또는 동적으로 할당된 공간인 Heap 영역을 이용하여 데이터를 주고받을 수 있다. 그렇기 때문에 프로세스 간 통신 방법에 비해 스레드 간의 통신 방법이 훨씬 간단하다. 심지어 스레드의 context switch 는 프로세스 context switch 와는 달리 캐시 메모리를 비울 필요가 없기 때문에 더 빠르다. 따라서 시스템의 throughput 이 향상되고 자원 소모가 줄어들며 자연스럽게 프로그램의 응답 시간이 단축된다. 이러한 장점 때문에 여러 프로세스로 할 수 있는 작업들을 하나의 프로세스에서 스레드로 나눠 수행하는 것이다.
프로세스를 이용하여 동시에 처리하던 일을 스레드로 구현할 경우 메모리 공간과 시스템 자원 소모가 줄어들게 된다. 스레드 간의 통신이 필요한 경우에도 별도의 자원을 이용하는 것이 아니라 전역 변수의 공간 또는 동적으로 할당된 공간인 영역을 이용하여 데이터를 주고받을 수 있다. 그렇기 때문에 프로세스 간 통신 방법에 비해 스레드 통신 방법이 훨씬 간단하다. 심지어 스레드의 context switch 는 프로세스 context switch 와는 달리 캐시 메모리를 비울 필요가 없기 때문에 더 빠르다. 따라서 시스템의 throughput 이 향상되고 자원 소모가 줄어들며 자연스럽게 프로그램의 응답 시간이 단축된다. 이러한 장점 때문에 여러 프로세스로 할 수 있는 작업들을 하나의 프로세스에서 스레드로 나눠 수행하는 것이다.

</br>

### 멀티 스레딩의 문제점
### 멀티스레딩의 문제점

멀티 프로세스 기반으로 프로그래밍할 때는 프로세스 간 공유하는 자원이 없기 때문에 동일한 자원에 동시에 접근하는 일이 없었지만 멀티 스레딩을 기반으로 프로그래밍할 때는 이 부분을 신경써줘야 한다. 서로 다른 스레드가 데이터와 힙 영역을 공유하기 때문에 어떤 스레드가 다른 스레드에서 사용중인 변수나 자료구조에 접근하여 엉뚱한 값을 읽어오거나 수정할 수 있다.
멀티프로세스 기반으로 프로그래밍할 때는 프로세스 간 공유하는 자원이 없기 때문에 동일한 자원에 동시에 접근하는 일이 없었지만, 멀티스레딩을 기반으로 프로그래밍할 때는 이 부분을 신경 써야 한다. 서로 다른 스레드가 데이터와 힙 영역을 공유하기 때문에 어떤 스레드가 다른 스레드에서 사용 중인 변수나 자료 구조에 접근하여 엉뚱한 값을 읽어오거나 수정할 수 있다.

그렇기 때문에 멀티스레딩 환경에서는 동기화 작업이 필요하다. 동기화를 통해 작업 처리 순서를 컨트롤 하고 공유 자원에 대한 접근을 컨트롤 하는 것이다. 하지만 이로 인해 병목현상이 발생하여 성능이 저하될 가능성이 높다. 그러므로 과도한 락으로 인한 병목현상을 줄여야 한다.
그렇기 때문에 멀티스레딩 환경에서는 동기화 작업이 필요하다. 동기화를 통해 작업 처리 순서를 컨트롤하고 공유 자원에 대한 접근을 컨트롤하는 것이다. 하지만 이로 인해 병목 현상이 발생하여 성능이 저하될 가능성이 높다. 그러므로 과도한 록(lock)으로 인한 병목 현상을 줄여야 한다.

</br>

### 멀티 스레드 vs 멀티 프로세스
### 멀티스레드 vs 멀티프로세스

멀티 스레드는 멀티 프로세스보다 적은 메모리 공간을 차지하고 문맥 전환이 빠르다는 장점이 있지만, 오류로 인해 하나의 스레드가 종료되면 전체 스레드가 종료될 수 있다는 점과 동기화 문제를 안고 있다. 반면 멀티 프로세스 방식은 하나의 프로세스가 죽더라도 다른 프로세스에는 영향을 끼치지 않고 정상적으로 수행된다는 장점이 있지만, 멀티 스레드보다 많은 메모리 공간과 CPU 시간을 차지한다는 단점이 존재한다. 이 두 가지는 동시에 여러 작업을 수행한다는 점에서 같지만 적용해야 하는 시스템에 따라 적합/부적합이 구분된다. 따라서 대상 시스템의 특징에 따라 적합한 동작 방식을 선택하고 적용해야 한다.
멀티스레드는 멀티프로세스보다 적은 메모리 공간을 차지하고 문맥 전환이 빠르다는 장점이 있지만, 오류로 인해 하나의 스레드가 종료되면 전체 스레드가 종료될 수 있다는 점과 동기화 문제를 안고 있다. 반면 멀티프로세스 방식은 하나의 프로세스가 죽더라도 다른 프로세스에는 영향을 끼치지 않고 정상적으로 수행된다는 장점이 있지만, 멀티스레드보다 많은 메모리 공간과 CPU 시간을 차지한다는 단점이 존재한다. 이 두 가지는 동시에 여러 작업을 수행한다는 점에서 같지만 적용해야 하는 시스템에 따라 적합/부적합이 구분된다. 따라서 대상 시스템의 특징에 따라 적합한 동작 방식을 선택하고 적용해야 한다.

[뒤로](https://github.com/JaeYeopHan/for_beginner)/[위로](#part-1-4-운영체제)

Expand Down Expand Up @@ -290,7 +288,7 @@ _글로만 설명하기가 어려운 것 같아 그림과 함께 설명된 링

### Critical Section(임계영역)

멀티 스레딩의 문제점에서 나오듯, 동일한 자원을 동시에 접근하는 작업(e.g. 공유하는 변수 사용, 동일 파일을 사용하는 등)을 실행하는 코드 영역을 Critical Section 이라 칭한다.
멀티스레딩의 문제점에서 나오듯, 동일한 자원을 동시에 접근하는 작업(e.g. 공유하는 변수 사용, 동일 파일을 사용하는 등)을 실행하는 코드 영역을 Critical Section 이라 칭한다.

### Critical Section Problem(임계영역 문제)

Expand Down Expand Up @@ -450,11 +448,11 @@ Spin lock이라고 불리는 Semaphore 초기 버전에서 Critical Section 에

### 페이지 교체

`요구 페이징` 에서 언급된대로 프로그램 실행시에 모든 항목이 물리 메모리에 올라오지 않기 때문에, 프로세스의 동작에 필요한 페이지를 요청하는 과정에서 `page fault(페이지 부재)`가 발생하게 되면, 원하는 페이지를 보조저장장치에서 가져오게 된다. 하지만, 만약 물리 메모리가 모두 사용중인 상황이라면, 페이지 교체가 이뤄져야 한다.(또는, 운영체제가 프로세스를 강제 종료하는 방법이 있다.)
`요구 페이징` 에서 언급된대로 프로그램 실행시에 모든 항목이 물리 메모리에 올라오지 않기 때문에, 프로세스의 동작에 필요한 페이지를 요청하는 과정에서 `page fault(페이지 부재)`가 발생하게 되면, 원하는 페이지를 보조저장장치에서 가져오게 된다. 하지만, 만약 물리 메모리가 모두 사용 중인 상황이라면, 페이지 교체가 이뤄져야 한다.(또는, 운영체제가 프로세스를 강제 종료하는 방법이 있다.)

#### 기본적인 방법

물리 메모리가 모두 사용중인 상황에서의 메모리 교체 흐름이다.
물리 메모리가 모두 사용 중인 상황에서의 메모리 교체 흐름이다.

1. 디스크에서 필요한 페이지의 위치를 찾는다
1. 빈 페이지 프레임을 찾는다.
Expand Down Expand Up @@ -525,22 +523,23 @@ Spin lock이라고 불리는 Semaphore 초기 버전에서 Critical Section 에

### 캐시의 지역성 원리

캐시 메모리는 속도가 빠른 장치와 느린 장치간의 속도차에 따른 병목 현상을 줄이기 위한 범용 메모리이다. 이러한 역할을 수행하기 위해서는 CPU 가 어떤 데이터를 원할 것인가를 어느 정도 예측할 수 있어야 한다. 캐시의 성능은 작은 용량의 캐시 메모리에 CPU 가 이후에 참조할, 쓸모 있는 정보가 어느 정도 들어있느냐에 따라 좌우되기 때문이다.
캐시 메모리는 속도가 빠른 장치와 느린 장치 간의 속도 차에 따른 병목 현상을 줄이기 위한 범용 메모리이다. 이러한 역할을 수행하기 위해서는 CPU 가 어떤 데이터를 원할 것인가를 어느 정도 예측할 수 있어야 한다. 캐시의 성능은 작은 용량의 캐시 메모리에 CPU 가 이후에 참조할, 쓸모 있는 정보가 어느 정도 들어있느냐에 따라 좌우되기 때문이다.

이 때 `적중율(Hit rate)`을 극대화 시키기 위해 데이터 `지역성(Locality)의 원리`를 사용한다. 지역성의 전제조건으로 프로그램은 모든 코드나 데이터를 균등하게 Access 하지 않는다는 특성을 기본으로 한다. 즉, `Locality`란 기억 장치 내의 정보를 균일하게 Access 하는 것이 아닌 어느 한 순간에 특정 부분을 집중적으로 참조하는 특성인 것이다.
이때 `적중율(hit rate)`을 극대화하기 위해 데이터 `지역성(locality)의 원리`를 사용한다. 지역성의 전제 조건으로 프로그램은 모든 코드나 데이터를 균등하게 access 하지 않는다는 특성을 기본으로 한다. 즉, `locality`란 기억 장치 내의 정보를 균일하게 access 하는 것이 아닌 어느 한순간에 특정 부분을 집중적으로 참조하는 특성이다.

데이터 지역성은 대표적으로 시간 지역성(Temporal Locality)과 공간 지역성(Spatial Locality)으로 나뉜다.
데이터 지역성은 대표적으로 시간 지역성(temporal locality)과 공간 지역성(spatial locality)으로 나뉜다.

* 시간 지역성 : 최근에 참조된 주소의 내용은 곧 다음에 다시 참조되는 특성.
* 시간 지역성 : 최근에 참조된 주소의 내용은 곧 다음에 다시 참조되는 특성
* 공간 지역성 : 대부분의 실제 프로그램이 참조된 주소와 인접한 주소의 내용이 다시 참조되는 특성

</br>

### Caching line
### Caching Line

언급했듯이 캐시(cache)는 프로세서 가까이에 위치하면서 빈번하게 사용되는 데이터를 놔두는 장소이다. 하지만 캐시가 아무리 가까이 있더라도 찾고자 하는 데이터가 어느 곳에 저장되어 있는지 몰라 모든 데이터를 순회해야 한다면 시간이 오래 걸리게 된다. 즉, 캐시에 목적 데이터가 저장되어 있다면 바로 접근하여 출력할 수 있어야 캐시가 의미 있어진다는 것이다.
언급했듯이 캐시(cache)는 프로세서 가까이에 위치하면서 빈번하게 사용되는 데이터를 놔두는 장소이다. 하지만 캐시가 아무리 가까이 있더라도 찾고자 하는 데이터가 어느 곳에 저장되어 있는지 몰라 모든 데이터를 순회해야 한다면 시간이 오래 걸리게 된다. 즉, 캐시에 목적 데이터가 저장되어 있다면 바로 접근하여 출력할 수 있어야 캐시가 의미 있게 된다는 것이다.

그렇기 때문에 캐시에 데이터를 저장할 때 특정 자료 구조를 사용하여 `묶음`으로 저장하게 되는데 이를 **캐싱 라인** 이라고 한다. 프로세스는 다양한 주소에 있는 데이터를 사용하므로 빈번하게 사용하는 데이터의 주소 또한 흩어져 있다. 따라서 캐시에 저장하는 데이터에는 데이터의 메모리 주소 등을 기록해 둔 태그를 달아 놓을 필요가 있다. 이러한 태그들의 묶음을 캐싱 라인이라고 하고 메모리로부터 가져올 때도 캐싱 라인을 기준으로 가져온다.

그렇기 때문에 캐시에 데이터를 저장할 때 특정 자료구조를 사용하여 `묶음`으로 저장하게 되는데 이를 **캐싱 라인** 이라고 한다. 프로세스는 다양한 주소에 있는 데이터를 사용하므로 빈번하게 사용하는 데이터의 주소 또한 흩어져 있다. 따라서 캐시에 저장하는 데이터에는 데이터의 메모리 주소 등을 기록해 둔 태그를 달아놓을 필요가 있다. 이러한 태그들의 묶음을 캐싱 라인이라고 하고 메모리로부터 가져올 때도 캐싱 라인을 기준으로 가져온다.
종류로는 대표적으로 세 가지 방식이 존재한다.

1. Full Associative
Expand Down