- pyyaml
- torch
- h5py
- tensorboard
- tqdm
- pytest
- clone the repository
- install the requirements
- download the raw / prepared data, (optional models and data sets for 2nd stage) and set the paths in paths.yaml (see later)
-
run main.py
python main.py --dataset NAME_OF_DATASET
-
run main.py:
python main.py --dataset NAME_OF_DATASET --case test --model PATH_TO_MODEL (after "runs/") optional arguments: --inputs: make sure, they are the same as in the model (default `gksi`) --visualize: visualize the results (default `False`)
-
for running a 2HP-NN you need the prepared 2HP-dataset in datasets_prepared_dir_2hp
-
for preparing 2HP-NN: expects that 1HP-NN exists and trained on; for 2HP-NN (including preparation) run main.py with the following arguments:
python main.py --dataset NAME_OF_DATASET --case_2hp True --model PATH_TO_1HPNN_MODEL (after "runs/") --inputs INPUTS (rather preparation case from 1HP-NN)
more information on required arguments: --inputs: make sure, they are the same as in the model (default
gksi
) + the number of datapoints (e.g. gksi_1000dp)optional arguments: --visualize: visualize the results (default
False
) --case:test
,train
orfinetune
(defaulttrain
)
#TODO
```
default_raw_dir: /scratch/sgs/pelzerja/datasets # where the raw 1st stage data is stored
datasets_prepared_dir: /home/pelzerja/pelzerja/test_nn/datasets_prepared/1HP_NN # where the prepared 1st stage data is stored
datasets_raw_domain_dir: /scratch/sgs/pelzerja/datasets/2hps_demonstrator_copy_of_local
datasets_prepared_domain_dir: /home/pelzerja/pelzerja/test_nn/datasets_prepared/2HP_domain
prepared_1hp_best_models_and_data_dir: /home/pelzerja/pelzerja/test_nn/1HP_NN_preparation_BEST_models_and_data
models_2hp_dir: /home/pelzerja/pelzerja/test_nn/1HP_NN/runs
datasets_prepared_dir_2hp: /home/pelzerja/pelzerja/test_nn/datasets_prepared/2HP_NN
```
-
if you want to use the GPU, you need to install pflotran with cuda support
-
check nvidia-smi for the available gpus and cuda version
-
export CUDA_VISIBLE_DEVICES=<gpu_id>
(e.g. 0) -
if the gpu is not found after suspension, try
sudo rmmod nvidia_uvm sudo modprobe nvidia_uvm
if it does not help, you have to reboot
- directly after paper submission (Oct. '23): cdc41426184756b9b1870e5c0f52d399bee0fae0
- after clean up, one month after paper submission (Oct. '23): c8da3da