This repo covers the official implementation of paper DIABETIC RETINOPATHY GRADING WITH WEAKLY-SUPERVISED LESION PRIORS
Download the DDR Dataset from DDR (github)
We provide the implementation of LANet with different backbones, including resnet, densenet, vgg, mobilenet, efficientnet, inceptionv3. Take resnet as an example:
DR recognition (binary classification)
python main_base.py --n_classes 2 --model res50 --visname ddr_res50_base2
DR grading (5-grade classification)
python main_base.py --n_classes 5 --model res50 --visname ddr_res50_base5
LANet (w/o adaptive loss)
python main_lanet.py --model res50 --visname ddr_res50_lanet
LANet (w/ adaptive loss)
python main_lanet.py --model res50 --adaloss True --visname ddr_res50_lanet_adl
baseline model
python main_base.py --dataset ddr --model res50 --visname tests --n_classes 5 --test True
LANet (w/ adaptive loss)
python main_lanet.py --dataset ddr --model res50 --visname tests --adaloss True --test True
@inproceedings{hou2023diabetic,
title={Diabetic Retinopathy Grading with Weakly-Supervised Lesion Priors},
author={Hou, Junlin and Xiao, Fan and Xu, Jilan and Feng, Rui and Zhang, Yuejie and Zou, Haidong and Lu, Lina and Xue, Wenwen},
booktitle={ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1--5},
year={2023},
organization={IEEE}
}