-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Mediation #219
base: master
Are you sure you want to change the base?
Mediation #219
Changes from 5 commits
396b38a
55a0eb6
16966a1
ab033b2
cd55d37
75ba960
21109b7
5dd24f0
d89a29c
e45b9ee
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,9 +34,11 @@ importFrom(DeclareDesign,diagnose_design) | |
importFrom(DeclareDesign,draw_data) | ||
importFrom(DeclareDesign,draw_estimands) | ||
importFrom(DeclareDesign,draw_estimates) | ||
importFrom(DeclareDesign,get_estimands) | ||
importFrom(DeclareDesign,redesign) | ||
importFrom(DeclareDesign,set_diagnosands) | ||
importFrom(DeclareDesign,tidy_estimator) | ||
importFrom(broom,tidy) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. pull in tidy from generics. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. thank for reviewing! |
||
importFrom(estimatr,difference_in_means) | ||
importFrom(estimatr,iv_robust) | ||
importFrom(estimatr,lm_robust) | ||
|
@@ -47,6 +49,7 @@ importFrom(fabricatr,draw_normal_icc) | |
importFrom(fabricatr,draw_ordered) | ||
importFrom(fabricatr,fabricate) | ||
importFrom(generics,tidy) | ||
importFrom(mediation,mediate) | ||
importFrom(randomizr,conduct_ra) | ||
importFrom(randomizr,draw_rs) | ||
importFrom(rlang,UQS) | ||
|
@@ -60,6 +63,7 @@ importFrom(rlang,quo_text) | |
importFrom(rlang,quos) | ||
importFrom(rlang,sym) | ||
importFrom(stats,formula) | ||
importFrom(stats,lm) | ||
importFrom(stats,poly) | ||
importFrom(stats,qnorm) | ||
importFrom(stats,rbinom) | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,76 +1,166 @@ | ||
#' Create a design for mediation analysis | ||
#' | ||
#' A mediation analysis design that examines the effect of treatment (Z) on mediator (M) and the effect of mediator (M) on outcome (Y) (given Z=0) | ||
#' as well as direct effect of treatment (Z) on outcome (Y) (given M=0). Analysis is implemented using an interacted regression model. | ||
#' Note this model is not guaranteed to be unbiased despite randomization of Z because of possible violations of sequential ignorability. | ||
#' | ||
#' @details | ||
#' A mediation analysis design that examines the effect of (Z) on mediator (M), the natural and controlled direct effect of treatment (Z) on outcome (Y) as well as the natural and controlled indirect effect of treatment (Z) on outcome (Y) through mediator (M). | ||
#' Analysis is implemented using a set of two linear structural models: a first stage model and a interacted model. Note estimates are not guaranteed to be unbiased despite randomization of Z because of possible violations of sequential ignorability. | ||
#' | ||
#' | ||
#' @details | ||
#' See \href{https://declaredesign.org/library/articles/mediation_analysis.html}{vignette online}. | ||
#' | ||
#' @param N An integer. Size of sample. | ||
#' @param a A number. Parameter governing effect of treatment (Z) on mediator (M). | ||
#' @param b A number. Effect of mediator (M) on outcome (Y) when Z = 0. | ||
#' @param c A number. Interaction between mediator (M) and (Z) for outcome (Y). | ||
#' @param d A number. Direct effect of treatment (Z) on outcome (Y), when M = 0. | ||
#' @param Z_on_M A number. Parameter governing effect of treatment (Z) on mediator (M). | ||
#' @param M_on_Y_Z0 A number. Effect of mediator (M) on outcome (Y) when Z = 0. | ||
#' @param M_on_Y_Z1 A number. Interaction between mediator (M) and (Z) for outcome (Y). | ||
#' @param Z_on_Y_M0 A number. Effect of treatment (Z) on outcome (Y), when M = 0. | ||
#' @param rho A number in [-1,1]. Correlation between mediator (M) and outcome (Y) error terms. Non zero correlation implies a violation of sequential ignorability. | ||
#' @param mediation_package A logical value. If 'TRUE' direct and indirect effects are estimated using \code{mediate} function from \code{mediation} package. Default is 'FALSE'. | ||
#' @return A mediation analysis design. | ||
#' @author \href{https://declaredesign.org/}{DeclareDesign Team} | ||
#' @concept experiment | ||
#' @concept mediation | ||
#' @importFrom DeclareDesign declare_assignment declare_estimands declare_estimator declare_population declare_potential_outcomes declare_reveal declare_step diagnose_design draw_estimands | ||
#' @importFrom DeclareDesign declare_assignment declare_estimands declare_estimator declare_population declare_potential_outcomes declare_reveal declare_step diagnose_design get_estimands | ||
#' @importFrom fabricatr fabricate fabricate | ||
#' @importFrom randomizr conduct_ra | ||
#' @importFrom estimatr lm_robust | ||
#' @importFrom randomizr conduct_ra | ||
#' @importFrom mediation mediate | ||
#' @importFrom stats lm | ||
#' @importFrom estimatr tidy lm_robust | ||
#' @importFrom broom tidy | ||
#' @export | ||
#' @examples | ||
#' # Generate a mediation analysis design using default arguments: | ||
#' mediation_1 <- mediation_analysis_designer() | ||
#' draw_estimands(mediation_1) | ||
#' get_estimands(mediation_1) | ||
#' \dontrun{ | ||
#' diagnose_design(mediation_1, sims = 1000) | ||
#' } | ||
#' | ||
#' # A design with a violation of sequential ignorability and heterogeneous effects: | ||
#' mediation_2 <- mediation_analysis_designer(a = 1, rho = .5, c = 1, d = .75) | ||
#' draw_estimands(mediation_2) | ||
#' mediation_2 <- mediation_analysis_designer(Z_on_M =1, rho = .5, M_on_Y_Z1 = 1, Z_on_Y_M0 =.75) | ||
#' get_estimands(mediation_2) | ||
#' \dontrun{ | ||
#' diagnose_design(mediation_2, sims = 1000) | ||
#' } | ||
#' | ||
mediation_analysis_designer <- function(N = 200, a = 1, b = .4, c = 0, d = .5, rho = 0) | ||
#' | ||
mediation_analysis_designer <- function(N = 200, | ||
Z_on_M = 1, | ||
M_on_Y_Z0 = .4, | ||
M_on_Y_Z1 = 0, | ||
Z_on_Y_M0 = .5, | ||
rho = 0, | ||
mediation_package = FALSE) | ||
|
||
{ | ||
|
||
if(abs(rho) > 1) stop("rho must be in [-1, 1]") | ||
|
||
mediation_analysis_expr <- mediate_estimator_expr <- NULL | ||
|
||
# I: Inquiry | ||
|
||
estimands_expr <- rlang::expr( | ||
estimands <- declare_estimands( | ||
FirstStage = mean(M_Z_1 - M_Z_0), | ||
natural_indirect_0 = mean(Y_nat1_Z_0 - Y_nat0_Z_0), | ||
natural_direct_0 = mean(Y_nat0_Z_1 - Y_nat0_Z_0), | ||
natural_direct_1 = mean(Y_nat1_Z_1 - Y_nat1_Z_0), | ||
controlled_indirect_0 = mean(Y_M_1_Z_0 - Y_M_0_Z_0), | ||
controlled_direct_0 = mean(Y_M_0_Z_1 - Y_M_0_Z_0), | ||
controlled_direct_1 = mean(Y_M_1_Z_1 - Y_M_1_Z_0) | ||
) | ||
) | ||
|
||
# Design | ||
|
||
mediation_design_expr <- rlang::expr( | ||
mediation_analysis_design <- population + | ||
POs_M + POs_Y + POs_Y_nat_0 + POs_Y_nat_1 + | ||
estimands + assignment + | ||
reveal_M + reveal_Y + reveal_nat0 + reveal_nat1 + manipulation + | ||
mediator_regression + stage2_1 + stage2_2 + stage2_3 | ||
) | ||
|
||
if(mediation_package){ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
|
||
# I: Inquiry | ||
estimands_expr <- rlang::expr( | ||
estimands <- declare_estimands( | ||
FirstStage = mean(M_Z_1 - M_Z_0), | ||
natural_indirect_0 = mean(Y_nat1_Z_0 - Y_nat0_Z_0), | ||
natural_indirect_1 = mean(Y_nat1_Z_1 - Y_nat0_Z_1), | ||
natural_direct_0 = mean(Y_nat0_Z_1 - Y_nat0_Z_0), | ||
natural_direct_1 = mean(Y_nat1_Z_1 - Y_nat1_Z_0), | ||
controlled_indirect_0 = mean(Y_M_1_Z_0 - Y_M_0_Z_0) , | ||
controlled_indirect_1 = mean(Y_M_1_Z_1 - Y_M_0_Z_1), | ||
controlled_direct_0 = mean(Y_M_0_Z_1 - Y_M_0_Z_0), | ||
controlled_direct_1 = mean(Y_M_1_Z_1 - Y_M_1_Z_0) | ||
) | ||
) | ||
|
||
# A: Answer Strategy | ||
|
||
|
||
|
||
|
||
mediate_estimator_expr <- rlang::expr( | ||
mediate_estimator <- declare_estimator(handler = function(data){ | ||
|
||
# QBA: Quasi-Bayesian Approximation | ||
e1 <- lm(M ~ Z, data = data) | ||
e2 <- lm(Y ~ M + Z + M:Z, data = data) | ||
m <- mediate(e1, e2, sims = 100, treat = "Z", mediator = "M") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
|
||
estimates <- tidy(m, conf.int = TRUE) | ||
estimates <- rbind(estimates, estimates) | ||
estimates$estimator_label <- rep(c("qba - indirect_0", "qba - indirect_1", "qba - direct_0", "qba - direct_1") , 2) | ||
estimates$estimand_label <- c("natural_indirect_0", "natural_indirect_1", "natural_direct_0", "natural_direct_1", | ||
c("controlled_indirect_0", "controlled_indirect_1", "controlled_direct_0", "controlled_direct_1") ) | ||
estimates$outcome <- rep("Y", 4) | ||
estimates$term <- rep(c("indirect_0", "indirect_1", "direct_0", "direct_1"), 2) | ||
as.data.frame(estimates) | ||
}, | ||
label = "mediate") | ||
) | ||
|
||
# Design | ||
mediation_design_expr <- rlang::expr( | ||
population + | ||
POs_M + POs_Y + POs_Y_nat_0 + POs_Y_nat_1 + | ||
estimands + assignment + | ||
reveal_M + reveal_Y + reveal_nat0 + reveal_nat1 + manipulation + | ||
mediator_regression + stage2_1 + stage2_2 + stage2_3 + mediate_estimator | ||
) | ||
} | ||
|
||
|
||
|
||
{{{ | ||
|
||
# M: Model | ||
|
||
population <- declare_population( | ||
N = N, | ||
e1 = rnorm(N), | ||
e2 = rnorm(n = N, mean = rho * e1, sd = sqrt(1 - rho^2)) | ||
) | ||
POs_M <- declare_potential_outcomes(M ~ 1*(a * Z + e1 > 0)) | ||
POs_Y <- declare_potential_outcomes(Y ~ d * Z + b * M + c * M * Z + e2, | ||
|
||
POs_M <- declare_potential_outcomes(M ~ 1 * (Z_on_M * Z + e1 > 0)) | ||
POs_Y <- declare_potential_outcomes(Y ~ Z_on_Y_M0 * Z + M_on_Y_Z0 * M + M_on_Y_Z1 * M * Z + e2, | ||
conditions = list(M = 0:1, Z = 0:1)) | ||
|
||
POs_Y_nat_0 <- declare_potential_outcomes( | ||
Y_nat0_Z_0 = b * M_Z_0 + e2, | ||
Y_nat0_Z_1 = d + b * M_Z_0 + c * M_Z_0 + e2) | ||
Y_nat0_Z_0 = M_on_Y_Z0 * M_Z_0 + e2, | ||
Y_nat0_Z_1 = Z_on_Y_M0 + M_on_Y_Z0 * M_Z_0 + M_on_Y_Z1 * M_Z_0 + e2) | ||
POs_Y_nat_1 <- declare_potential_outcomes( | ||
Y_nat1_Z_0 = b * M_Z_1 + e2, | ||
Y_nat1_Z_1 = d + b * M_Z_1 + c * M_Z_1 + e2) | ||
Y_nat1_Z_0 = M_on_Y_Z0 * M_Z_1 + e2, | ||
Y_nat1_Z_1 = Z_on_Y_M0 + M_on_Y_Z0 * M_Z_1 + M_on_Y_Z1 * M_Z_1 + e2) | ||
|
||
# I: Inquiry | ||
estimands <- declare_estimands( | ||
FirstStage = mean(M_Z_1 - M_Z_0), | ||
Indirect_0 = mean(Y_M_1_Z_0 - Y_M_0_Z_0), | ||
Indirect_1 = mean(Y_M_1_Z_1 - Y_M_0_Z_1), | ||
Controlled_Direct_0 = mean(Y_M_0_Z_1 - Y_M_0_Z_0), | ||
Controlled_Direct_1 = mean(Y_M_1_Z_1 - Y_M_1_Z_0), | ||
Natural_Direct_0 = mean(Y_nat0_Z_1 - Y_nat0_Z_0), | ||
Natural_Direct_1 = mean(Y_nat1_Z_1 - Y_nat1_Z_0) | ||
) | ||
|
||
rlang::eval_bare(estimands_expr) | ||
|
||
# D: Data strategy | ||
|
||
assignment <- declare_assignment() | ||
reveal_M <- declare_reveal(M, Z) | ||
reveal_Y <- declare_reveal(Y, assignment_variable = c("M","Z")) | ||
|
@@ -79,60 +169,99 @@ mediation_analysis_designer <- function(N = 200, a = 1, b = .4, c = 0, d = .5, r | |
manipulation <- declare_step(Not_M = 1 - M, handler = fabricate) | ||
|
||
# A: Answer Strategy | ||
|
||
mediator_regression <- declare_estimator( | ||
M ~ Z, | ||
model = lm_robust, | ||
estimand = "FirstStage", | ||
label = "Stage 1") | ||
label = "Stage 1", | ||
estimand = "FirstStage" | ||
) | ||
|
||
|
||
stage2_1 <- declare_estimator( | ||
Y ~ Z * M, | ||
Y ~ Z * M, | ||
model = lm_robust, | ||
term = c("M"), | ||
estimand = c("Indirect_0"), | ||
label = "Stage 2" | ||
label = "Stage 2", | ||
estimand = c( "natural_indirect_0", "controlled_indirect_0") | ||
) | ||
|
||
stage2_2 <- declare_estimator( | ||
Y ~ Z * M, | ||
Y ~ Z * M, | ||
model = lm_robust, | ||
term = c("Z"), | ||
estimand = c("Controlled_Direct_0", "Natural_Direct_0"), | ||
label = "Direct_0" | ||
label = "Direct_0", | ||
estimand = c("natural_direct_0", "controlled_direct_0") | ||
) | ||
|
||
stage2_3 <- declare_estimator( | ||
Y ~ Z * Not_M, | ||
Y ~ Z * Not_M, | ||
model = lm_robust, | ||
term = c("Z"), | ||
estimand = c("Controlled_Direct_1", "Natural_Direct_1"), | ||
label = "Direct_1" | ||
label = "Direct_1", | ||
estimand = c("natural_direct_1", "controlled_direct_1") | ||
) | ||
|
||
|
||
rlang::eval_bare(mediate_estimator_expr) | ||
|
||
# Design | ||
mediation_analysis_design <- population + | ||
POs_M + POs_Y + POs_Y_nat_0 + POs_Y_nat_1 + | ||
estimands + assignment + | ||
reveal_M + reveal_Y + reveal_nat0 + reveal_nat1 + manipulation + | ||
mediator_regression + stage2_1 + stage2_2 + stage2_3 | ||
|
||
mediation_analysis_design <- rlang::eval_bare(mediation_design_expr) | ||
|
||
|
||
}}} | ||
attr(mediation_analysis_design, "code") <- | ||
construct_design_code(mediation_analysis_designer, match.call.defaults()) | ||
|
||
mediation_analysis_design | ||
design_code <- | ||
construct_design_code( | ||
mediation_analysis_designer, | ||
match.call.defaults(), | ||
arguments_as_values = TRUE, | ||
exclude_args = "mediation_package" | ||
) | ||
|
||
if(mediation_package) | ||
substitutes <- list(rlang::quo_text(mediation_analysis_expr), rlang::quo_text(mediate_estimator_expr)) | ||
else | ||
substitutes <- list("", "") | ||
|
||
|
||
design_code <- | ||
gsub("rlang::eval_bare\\(mediation_analysis_expr\\)", substitutes[[1]], design_code) | ||
design_code <- | ||
gsub("rlang::eval_bare\\(mediate_estimator_expr\\)", substitutes[[2]], design_code) | ||
|
||
design_code <- | ||
gsub("rlang::eval_bare\\(mediation_design_expr\\)", rlang::quo_text(mediation_design_expr), design_code) | ||
design_code <- | ||
gsub("rlang::eval_bare\\(estimands_expr\\)", rlang::quo_text(estimands_expr), design_code) | ||
|
||
attr(mediation_analysis_design, "code") <- design_code | ||
return(mediation_analysis_design) | ||
|
||
} | ||
|
||
|
||
attr(mediation_analysis_designer,"shiny_arguments") <- list( | ||
N = c(100, 50, 1000), | ||
a = seq(from = .5, to = -.5, by = -.5), | ||
b = seq(from = .5, to = -.5, by = -.5), | ||
d = seq(from = .5, to = -.5, by = -.5), | ||
rho = c(.2, seq(from = -1, to = 1, by = .5)) | ||
Z_on_M = seq(from = .5, to = -.5, by = -.5), | ||
M_on_Y_Z0 = seq(from = .5, to = -.5, by = -.5), | ||
M_on_Y_Z1 = seq(from = .5, to = -.5, by = -.5), | ||
Z_on_Y_M0 = seq(from = .5, to = -.5, by = -.5), | ||
rho = c(.2, seq(from = -1, to = 1, by = .5)), | ||
mediation_package = c(FALSE, TRUE) | ||
) | ||
|
||
attr(mediation_analysis_designer,"tips") <- c( | ||
N = "Size of sample", | ||
a = "Effect of treatment (Z) on mediator (M)", | ||
b = "Effect of mediator (M) on outcome (Y)", | ||
d = "Direct effect of treatment (Z) on outcome (Y)", | ||
rho = "Correlation of mediator (M) and outcome (Y) error terms" | ||
Z_on_M = "Effect of treatment (Z) on mediator (M)", | ||
M_on_Y_Z0 = "Effect of mediator (M) on outcome (Y) when Z = 0", | ||
M_on_Y_Z1 = "Interaction between mediator (M) and (Z) for outcome (Y)", | ||
Z_on_Y_M0 = "Effect of treatment (Z) on outcome (Y), when M = 0", | ||
rho = "Correlation between mediator (M) and outcome (Y) error terms", | ||
mediation_package = "If 'TRUE' direct and indirect effects are estimated using mediation::mediate()" | ||
) | ||
|
||
attr(mediation_analysis_designer,"description") <- " | ||
<p> A mediation analysis design with sample size <code>N</code> that examines | ||
the effect of treatment (Z) on mediator (M) and the effect of mediator (M) on | ||
|
@@ -143,5 +272,3 @@ outcome (Y) (given Z=0) as well as direct effect of treatment (Z) on outcome | |
|
||
<p> Error terms on mediator (M) and outcome (Y) correlated by <code>rho</code> | ||
" | ||
|
||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
mediation should probably be a suggets and not an imports.