-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search.py
66 lines (59 loc) · 2.96 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""This module contains grid searches for knn and matrix factorization algorithms"""
from surprise.model_selection import GridSearchCV
def perform_grid_search(data, model_dict, param_grid, cv):
"""
Return list of trained models in GridSearch
:param data: Trainset to use in model training
:param model_dict: Dictionary with list of models(and their names) to be used
:param param_grid: Dictionary with algorithm parameters
:param cv: Determines the cross-validation splitting. By default 5-fold.
:return List of trained models
"""
results_list = []
for name, model in model_dict.items():
grid = GridSearchCV(model, param_grid, cv=cv, n_jobs=-1)
grid.fit(data)
print(f'Best parameters for model {name} are {grid.best_params}')
results_list.append((name, grid))
return results_list
def grid_knn(data, model_dict, k_list, min_k_list, similarities_list, user_based, cv=5):
"""
Return list of trained models in GridSearch for KNN algorithms
:param data: Trainset to use in model training
:param model_dict: Dictionary with list of models(and their names) to be used
:param k_list: List of k values
:param min_k_list: List of min_k values
:param similarities_list: List of similarity measures
:param user_based: Defines user-based or item-based approach
:param cv: Determines the cross-validation splitting. By default 5-fold.
:return List of trained models
"""
# Define param grid
param_grid = dict()
param_grid['k'] = k_list
param_grid['min_k'] = min_k_list
param_grid['sim_options'] = dict()
param_grid['sim_options']['name'] = similarities_list
param_grid['sim_options']['user_based'] = [user_based]
results = perform_grid_search(data, model_dict, param_grid, cv)
return results
def grid_matrix_fact(data, model_dict, n_epochs, n_factors, lr_all, reg_all, cv=5):
"""
Return list of trained models in GridSearch for SVD algorithm
:param data: Trainset to use in model training
:param model_dict: Dictionary with list of models(and their names) to be used
:param n_epochs: List of n_epochs values
:param n_factors: List of n_factors values
:param lr_all: List of lr_all values
:param reg_all: List of reg_all values
:param cv: Determines the cross-validation splitting. By default 5-fold.
:return List of trained models
"""
# Define param grid
param_grid = dict()
param_grid['n_epochs'] = n_epochs
param_grid['lr_all'] = lr_all
param_grid['n_factors'] = n_factors
param_grid['reg_all'] = reg_all
results = perform_grid_search(data, model_dict, param_grid, cv)
return results