-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheda.py
86 lines (71 loc) · 2.5 KB
/
eda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""This module contains functions used for Exploratory Data Analysis."""
import random
import dexplot
import matplotlib.pyplot as plt
def rows_number(df):
"""
Show number of rows in DataFrame.
:param df: Pandas DataFrame.
"""
print(f'Number of rows is {len(df)}')
def unique_values(df):
"""
Show number of unique values for each column in DataFrame.
:param df: Pandas DataFrame.
"""
for col in df.columns:
print(f'Number of unique values in {col} column is {len(df[col].unique())}')
def grouping(df, col_name):
"""
:param df: Pandas DataFrame.
:param col_name: Name of column.
:return DataFrame grouped by given column with count aggregation function
"""
return df.groupby(col_name)['rating'].count()
def show_df_info(df):
"""
Show basic information about DataFrame : header,
number of rows, number of NaNs and unique values in each column.
:param df: Pandas DataFrame.
"""
print('Header : ')
display(df.head())
rows_number(df)
print('Number of NaN values in each column : ')
display(df.isna().sum())
unique_values(df)
def show_duplicates(df):
"""
Show number of duplicated rows in given DataFrame.
:param df: Pandas DataFrame.
"""
print('Number of duplicated rows : ')
display(df.duplicated().sum())
def filter_random_values(n, df, col_name):
"""
Filter randomly chosen part of DataFrame.
:param n: Sample size
:param df: Pandas DataFrame.
:param col_name: DataFrame column name
:return filtered DataFrame
"""
# check if sample size is lower than 1
assert n < 1
# list of unique values in column col_name
val_list = list(df[col_name].unique())
# randomly choose part of DataFrame
chosen_val = random.sample(val_list, int(n * len(val_list)))
return df[df[col_name].isin(chosen_val)]
def generate_hist(df, col_name, title):
"""
Generate a histogram for DataFrame grouped by col_name
and show basic statistics.
:param df: Pandas DataFrame.
:param col_name: DataFrame column name.
:param title: Title to be used in histogram
"""
data_grouped = grouping(df, col_name)
display(dexplot.hist(val='rating', data=data_grouped, title=title, cmap='plasma',
xlabel='Number of ratings'))
print('Statistics for dataframe grouped by ' + str(col_name) + ':')
print(data_grouped.describe())