-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_overview.py
145 lines (124 loc) · 5.33 KB
/
data_overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import print_function, unicode_literals, division
import os
import pprint
from pymongo import MongoClient
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True}) # adjust plot areas automatically
def get_db(db_name):
""" Connect to MongoDB and return db object
:param db_name: database name
:return: database object
"""
client = MongoClient('localhost:27017')
db = client[db_name]
return db
def top_x_amenities(db, x):
""" Get count of top x amenities types from the data
:param db: database name
:param x: number of amenities type to return
:return: list of dictionaries with the count of top x amenities.
"""
pipeline = [{"$match": {"amenity": {"$exists": True}}},
{"$group": {"_id": "$amenity", "count": {"$sum": 1}}},
{"$sort": {"count": -1}},
{"$limit": x}]
return aggregate(db, pipeline)
def aggregate(db, pipeline):
""" Given a pipeline, return a list
with the results of running the pipeline in the MongoDB
:param db: database name
:param pipeline: list of MongoDB documents with pipeline commands
:return: list of results
"""
return [doc for doc in db.goettingen.aggregate(pipeline)]
def plot_top_x_amenities(db, x, where="screen"):
""" Make a bar plot of the top x amenities.
:param db: mongo db object
:param x: number of top amenity types to return
:param where: "screen" (default) or "file". Where you want the plot?
"screen": shows plot via plt.show().
"file": saves plot in working dir as a png.
"""
top_x_df = pd.DataFrame(top_x_amenities(db, x))
plot = sns.barplot(x="count", y="_id", data=top_x_df, color=sns.color_palette()[0])
plot.set(xlabel ="count", ylabel="amenity")
if where=="file":
plt.savefig("top_"+str(x)+"amenitys.png")
elif where=="screen":
plt.show(plot)
plt.close()
def amenities_accessibility(db, amenities):
""" Return the count of amenities grouped by wheelchair accessibility.
:param db: db
:param amenities: list of amenities
:return: list of results
"""
pipeline = [{"$match": {"amenity": {"$in": amenities}}},
{"$group": {"_id": {"amenity": "$amenity",
"wheelchair": "$wheelchair"},
"count": {"$sum": 1}}}]
return aggregate(db, pipeline)
def expand_ids(dict_):
""" Flattens the dictionary, so that the
keys inside "_id" are at the same level as the
remaining keys.
:param dict_: dictionary with a subdictionary under the "_id" key.
:return: flat dictionary
"""
r_dict = dict_.copy()
r_dict.pop("_id")
ids = dict_["_id"]
r_dict.update(ids)
return r_dict
def plot_amenities_and_access(db, amenities_list, where="screen"):
""" Makes a bar plot with the acessibility information
for each amenity type.
:param db: database name
:param amenities_list: list of amenities to include in plot
:param where: "screen" (default) or "file". Where you want the plot?
"screen": shows plot via plt.show().
"file": saves plot in working dir as a png.
"""
amenities_access = amenities_accessibility(db, amenities_list)
amenities_access = pd.DataFrame([expand_ids(el) for el in amenities_access])
amenities_access.fillna("no data", inplace=True)
amenities_access_percentage = (amenities_access.groupby(["amenity", "wheelchair"]).
aggregate({"count": "sum"}).
groupby(level=0).
apply(lambda x: 100*x/x.sum())) #http://stackoverflow.com/a/23377232/1952996
plot = sns.factorplot(x="count", y="amenity",
hue="wheelchair",
data=amenities_access_percentage.reset_index(),
kind="bar",
hue_order=["yes", "limited", "no", "no data"],
legend=False,
aspect=2)
plot.set(xlabel ="wheelchair accessibility (%)", ylabel="amenity")
plt.legend(loc="upper right")
if where=="file":
plt.savefig("amenities_and_access.png")
elif where=="screen":
plt.show(plot)
plt.close()
if __name__ == "__main__":
print("# File sizes:")
print("goettingen.osm size:", os.path.getsize("goettingen.osm"), "bytes")
print("goettingen.osm.json size:", os.path.getsize("goettingen.osm.json"), "bytes")
db = get_db("maps")
print("# Number of unique users:")
print(len(db.goettingen.distinct("created.user")))
print("# Number of ways:")
print(db.goettingen.find({"type":"way"}).count())
print("# Number of nodes:")
print(db.goettingen.find({"type":"node"}).count())
print("# Number of vending machines with food:")
print(db.goettingen.find({"amenity":"vending_machine",
"vending": {"$in": ["food", "food;drinks"]}
}).count())
plot_top_x_amenities(db, 20, where="file")
amenities_to_explore = ["restaurant", "kindergarten", "fast_food",
"doctors", "cafe", "place_of_worship", "school"]
plot_amenities_and_access(db, amenities_to_explore, where="file")