-
Notifications
You must be signed in to change notification settings - Fork 8
/
motif_sample.py
586 lines (516 loc) · 27.7 KB
/
motif_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import os
import shutil
import argparse
import random
import torch
import numpy as np
import math
from vina import Vina
from openbabel import pybel
import subprocess
import multiprocessing as mp
from functools import partial
from torch_geometric.data import Batch
from tqdm.auto import tqdm
from rdkit import Chem
from rdkit.Geometry import Point3D
from torch.utils.data import DataLoader
from rdkit.Chem.rdchem import BondType
from rdkit.Chem import ChemicalFeatures, rdMolDescriptors
from rdkit import RDConfig
from rdkit.Chem.Descriptors import MolLogP, qed
from copy import deepcopy
import tempfile
import AutoDockTools
import contextlib
from torch_scatter import scatter_add, scatter_mean
from rdkit.Geometry import Point3D
from meeko import MoleculePreparation
from meeko import obutils
from models.flag import FLAG
from utils.transforms import *
from utils.datasets import get_dataset
from utils.misc import *
from utils.data import *
from utils.mol_tree import *
from utils.chemutils import *
from utils.dihedral_utils import *
from utils.sascorer import compute_sa_score
from rdkit.Chem import AllChem
_fscores = None
ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable',
'ZnBinder']
ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)}
STATUS_RUNNING = 'running'
STATUS_FINISHED = 'finished'
STATUS_FAILED = 'failed'
def supress_stdout(func):
def wrapper(*a, **ka):
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
return func(*a, **ka)
return wrapper
class PrepLig(object):
def __init__(self, input_mol, mol_format):
if mol_format == 'smi':
self.ob_mol = pybel.readstring('smi', input_mol)
elif mol_format == 'sdf':
self.ob_mol = next(pybel.readfile(mol_format, input_mol))
else:
raise ValueError(f'mol_format {mol_format} not supported')
def addH(self, polaronly=False, correctforph=True, PH=7):
self.ob_mol.OBMol.AddHydrogens(polaronly, correctforph, PH)
obutils.writeMolecule(self.ob_mol.OBMol, 'tmp_h.sdf')
def gen_conf(self):
sdf_block = self.ob_mol.write('sdf')
rdkit_mol = Chem.MolFromMolBlock(sdf_block, removeHs=False)
AllChem.EmbedMolecule(rdkit_mol, Chem.rdDistGeom.ETKDGv3())
self.ob_mol = pybel.readstring('sdf', Chem.MolToMolBlock(rdkit_mol))
obutils.writeMolecule(self.ob_mol.OBMol, 'conf_h.sdf')
@supress_stdout
def get_pdbqt(self, lig_pdbqt=None):
preparator = MoleculePreparation()
preparator.prepare(self.ob_mol.OBMol)
if lig_pdbqt is not None:
preparator.write_pdbqt_file(lig_pdbqt)
return
else:
return preparator.write_pdbqt_string()
class PrepProt(object):
def __init__(self, pdb_file):
self.prot = pdb_file
def del_water(self, dry_pdb_file): # optional
with open(self.prot) as f:
lines = [l for l in f.readlines() if l.startswith('ATOM') or l.startswith('HETATM')]
dry_lines = [l for l in lines if not 'HOH' in l]
with open(dry_pdb_file, 'w') as f:
f.write(''.join(dry_lines))
self.prot = dry_pdb_file
def addH(self, prot_pqr): # call pdb2pqr
self.prot_pqr = prot_pqr
subprocess.Popen(['pdb2pqr30', '--ff=AMBER', self.prot, self.prot_pqr],
stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL).communicate()
def get_pdbqt(self, prot_pdbqt):
prepare_receptor = os.path.join(AutoDockTools.__path__[0], 'Utilities24/prepare_receptor4.py')
subprocess.Popen(['python3', prepare_receptor, '-r', self.prot_pqr, '-o', prot_pdbqt],
stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL).communicate()
def calculate_vina(number, pro_path, lig_path):
lig_path = os.path.join(lig_path, str(number)+'.sdf')
size_factor = 1.2
buffer = 5.
# openmm_relax(pro_path)
# relax_sdf(lig_path)
mol = Chem.MolFromMolFile(lig_path, sanitize=True)
pos = mol.GetConformer(0).GetPositions()
center = np.mean(pos, 0)
ligand_pdbqt = './data/tmp/' + str(number) + '_lig.pdbqt'
protein_pqr = './data/tmp/' + str(number) + '_pro.pqr'
protein_pdbqt = './data/tmp/' + str(number) + '_pro.pdbqt'
lig = PrepLig(lig_path, 'sdf')
lig.addH()
lig.get_pdbqt(ligand_pdbqt)
prot = PrepProt(pro_path)
prot.addH(protein_pqr)
prot.get_pdbqt(protein_pdbqt)
v = Vina(sf_name='vina', seed=0, verbosity=0)
v.set_receptor(protein_pdbqt)
v.set_ligand_from_file(ligand_pdbqt)
x, y, z = (pos.max(0) - pos.min(0)) * size_factor + buffer
v.compute_vina_maps(center=center, box_size=[x, y, z])
energy = v.score()
print('Score before minimization: %.3f (kcal/mol)' % energy[0])
energy_minimized = v.optimize()
print('Score after minimization : %.3f (kcal/mol)' % energy_minimized[0])
v.dock(exhaustiveness=64, n_poses=32)
score = v.energies(n_poses=1)[0][0]
print('Score after docking : %.3f (kcal/mol)' % score)
return score
def get_feat(mol):
fdefName = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')
factory = ChemicalFeatures.BuildFeatureFactory(fdefName)
atomic_numbers = torch.LongTensor([6, 7, 8, 9, 15, 16, 17]) # C N O F P S Cl
ptable = Chem.GetPeriodicTable()
Chem.SanitizeMol(mol)
feat_mat = np.zeros([mol.GetNumAtoms(), len(ATOM_FAMILIES)], dtype=np.int_)
for feat in factory.GetFeaturesForMol(mol):
feat_mat[feat.GetAtomIds(), ATOM_FAMILIES_ID[feat.GetFamily()]] = 1
ligand_element = torch.tensor([ptable.GetAtomicNumber(atom.GetSymbol()) for atom in mol.GetAtoms()])
element = ligand_element.view(-1, 1) == atomic_numbers.view(1, -1) # (N_atoms, N_elements)
return torch.cat([element, torch.tensor(feat_mat)], dim=-1).float()
def find_reference(protein_pos, focal_id):
# Select three reference protein atoms
d = torch.norm(protein_pos - protein_pos[focal_id], dim=1)
reference_idx = torch.topk(d, k=4, largest=False)[1]
reference_pos = protein_pos[reference_idx]
return reference_pos, reference_idx
def SetAtomNum(mol, atoms):
for atom in mol.GetAtoms():
if atom.GetIdx() in atoms:
atom.SetAtomMapNum(1)
else:
atom.SetAtomMapNum(0)
return mol
def SetMolPos(mol_list, pos_list):
new_mol_list = []
for i in range(len(pos_list)):
mol = mol_list[i]
conf = mol.GetConformer(0)
pos = pos_list[i].cpu().double().numpy()
if mol.GetNumAtoms() == len(pos):
for node in range(mol.GetNumAtoms()):
x, y, z = pos[node]
conf.SetAtomPosition(node, Point3D(x,y,z))
try:
AllChem.UFFOptimizeMolecule(mol)
new_mol_list.append(mol)
except:
new_mol_list.append(mol)
return new_mol_list
def lipinski(mol):
count = 0
if qed(mol) <= 5:
count += 1
if Chem.Lipinski.NumHDonors(mol) <= 5:
count += 1
if Chem.Lipinski.NumHAcceptors(mol) <= 10:
count += 1
if Chem.Descriptors.ExactMolWt(mol) <= 500:
count += 1
if Chem.Lipinski.NumRotatableBonds(mol) <= 5:
count += 1
return count
def refine_pos(ligand_pos, protein_pos, h_ctx_ligand, h_ctx_protein, model, batch, repeats, protein_batch,
ligand_batch):
protein_offsets = torch.cumsum(protein_batch.bincount(), dim=0)
ligand_offsets = torch.cumsum(ligand_batch.bincount(), dim=0)
protein_offsets, ligand_offsets = torch.cat([torch.tensor([0]), protein_offsets]), torch.cat([torch.tensor([0]), ligand_offsets])
sr_ligand_idx, sr_protein_idx = [], []
sr_ligand_idx0, sr_ligand_idx1 = [], []
for i in range(len(repeats)):
alpha_index = batch['alpha_carbon_indicator'][protein_batch == i].nonzero().reshape(-1)
ligand_atom_index = torch.arange(repeats[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, torch.arange(len(alpha_index))).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_protein_idx.append(alpha_index[q_idx] + protein_offsets[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, ligand_atom_index).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx0.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_ligand_idx1.append(ligand_atom_index[q_idx] + ligand_offsets[i])
sr_ligand_idx, sr_protein_idx = torch.cat(sr_ligand_idx).long(), torch.cat(sr_protein_idx).long()
sr_ligand_idx0, sr_ligand_idx1 = torch.cat(sr_ligand_idx0).long(), torch.cat(sr_ligand_idx1).long()
dist_alpha = torch.norm(ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx], dim=1)
dist_intra = torch.norm(ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1], dim=1)
input_dir_alpha = ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx]
input_dir_intra = ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1]
distance_emb1 = model.encoder.distance_expansion(torch.norm(input_dir_alpha, dim=1))
distance_emb2 = model.encoder.distance_expansion(torch.norm(input_dir_intra, dim=1))
input1 = torch.cat([h_ctx_ligand[sr_ligand_idx], h_ctx_protein[sr_protein_idx], distance_emb1], dim=-1)[dist_alpha <= 10.0]
input2 = torch.cat([h_ctx_ligand[sr_ligand_idx0], h_ctx_ligand[sr_ligand_idx1], distance_emb2], dim=-1)[dist_intra <= 10.0]
# distance cut_off
norm_dir1 = F.normalize(input_dir_alpha, p=2, dim=1)[dist_alpha <= 10.0]
norm_dir2 = F.normalize(input_dir_intra, p=2, dim=1)[dist_intra <= 10.0]
force1 = scatter_mean(model.refine_protein(input1) * norm_dir1, dim=0, index=sr_ligand_idx[dist_alpha <= 10.0], dim_size=ligand_pos.size(0))
force2 = scatter_mean(model.refine_ligand(input2) * norm_dir2, dim=0, index=sr_ligand_idx0[dist_intra <= 10.0], dim_size=ligand_pos.size(0))
ligand_pos += force1
ligand_pos += force2
ligand_pos = [ligand_pos[ligand_batch==k].float() for k in range(len(repeats))]
return ligand_pos
def ligand_gen(batch, model, vocab, config, center, device, refinement=False):
pos_list = []
feat_list = []
motif_id = [0 for _ in range(config.sample.batch_size)]
finished = torch.zeros(config.sample.batch_size).bool()
for i in range(config.sample.max_steps):
print(i)
print(finished)
if torch.sum(finished) == config.sample.batch_size:
# mol_list = SetMolPos(mol_list, pos_list)
return mol_list, pos_list
if i == 0:
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'],
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=batch['ligand_context_pos'],
ligand_atom_feature=batch['ligand_context_feature_full'].float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=batch['ligand_context_element_batch'])
protein_atom_feature = batch['protein_atom_feature'].float()
focal_protein = focal_pred[mask_protein]
h_ctx_protein = h_ctx[mask_protein]
focus_score = torch.sigmoid(focal_protein)
#can_focus = focus_score > 0.5
slice_idx = torch.cat([torch.tensor([0]).to(device), torch.cumsum(batch['protein_element_batch'].bincount(), dim=0)])
focal_id = []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
focal_id.append(torch.argmax(focus.reshape(-1).float()).item() + slice_idx[j].item())
focal_id = torch.tensor(focal_id, device=device)
h_ctx_focal = h_ctx_protein[focal_id]
current_wid = torch.tensor([vocab.size()] * config.sample.batch_size, device=device)
next_motif_wid, motif_prob = model.forward_motif(h_ctx_focal, current_wid, torch.arange(config.sample.batch_size, device=device).to(device))
mol_list = [Chem.MolFromSmiles(vocab.get_smiles(id)) for id in next_motif_wid]
for j in range(config.sample.batch_size):
AllChem.EmbedMolecule(mol_list[j])
AllChem.UFFOptimizeMolecule(mol_list[j])
ligand_pos, ligand_feat = torch.tensor(mol_list[j].GetConformer().GetPositions(), device=device), get_feat(mol_list[j]).to(device)
feat_list.append(ligand_feat)
# set the initial positions with distance matrix
reference_pos, reference_idx = find_reference(batch['protein_pos'][slice_idx[j]:slice_idx[j + 1]], focal_id[j] - slice_idx[j])
p_idx, l_idx = torch.cartesian_prod(torch.arange(4), torch.arange(len(ligand_pos))).chunk(2, dim=-1)
p_idx = p_idx.squeeze(-1).to(device)
l_idx = l_idx.squeeze(-1).to(device)
d_m = model.dist_mlp(torch.cat([protein_atom_feature[reference_idx[p_idx]], ligand_feat[l_idx]], dim=-1)).reshape(4,len(ligand_pos))
d_m = d_m ** 2
p_d, l_d = self_square_dist(reference_pos), self_square_dist(ligand_pos)
D = torch.cat([torch.cat([p_d, d_m], dim=1), torch.cat([d_m.permute(1, 0), l_d], dim=1)])
coordinate = eig_coord_from_dist(D)
new_pos, _, _ = kabsch_torch(coordinate[:len(reference_pos)], reference_pos,
coordinate[len(reference_pos):])
# new_pos += (center*0.8+torch.mean(reference_pos, dim=0)*0.2) - torch.mean(new_pos, dim=0)
new_pos += (center - torch.mean(new_pos, dim=0)) * .8
pos_list.append(new_pos)
atom_to_motif = [{} for _ in range(config.sample.batch_size)]
motif_to_atoms = [{} for _ in range(config.sample.batch_size)]
motif_wid = [{} for _ in range(config.sample.batch_size)]
for j in range(config.sample.batch_size):
for k in range(mol_list[j].GetNumAtoms()):
atom_to_motif[j][k] = 0
for j in range(config.sample.batch_size):
motif_to_atoms[j][0] = list(np.arange(mol_list[j].GetNumAtoms()))
motif_wid[j][0] = next_motif_wid[j].item()
else:
repeats = torch.tensor([len(pos) for pos in pos_list], device=device)
ligand_batch = torch.repeat_interleave(torch.arange(config.sample.batch_size, device=device), repeats)
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch)
# structure refinement
if refinement:
pos_list = refine_pos(torch.cat(pos_list, dim=0).float(), batch['protein_pos'].float(),
h_ctx[~mask_protein], h_ctx[mask_protein], model, batch, repeats.tolist(),
batch['protein_element_batch'], ligand_batch)
focal_ligand = focal_pred[~mask_protein]
h_ctx_ligand = h_ctx[~mask_protein]
focus_score = torch.sigmoid(focal_ligand)
can_focus = focus_score > 0.
slice_idx = torch.cat([torch.tensor([0], device=device), torch.cumsum(repeats, dim=0)])
current_atoms_batch, current_atoms = [], []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
if torch.sum(can_focus[slice_idx[j]:slice_idx[j + 1]]) > 0 and ~finished[j]:
sample_focal_atom = torch.multinomial(focus.reshape(-1).float(), 1)
focal_motif = atom_to_motif[j][sample_focal_atom.item()]
motif_id[j] = focal_motif
else:
finished[j] = True
current_atoms.extend((np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist())
current_atoms_batch.extend([j] * len(motif_to_atoms[j][motif_id[j]]))
mol_list[j] = SetAtomNum(mol_list[j], motif_to_atoms[j][motif_id[j]])
# second step: next motif prediction
current_wid = [motif_wid[j][motif_id[j]] for j in range(len(mol_list))]
next_motif_wid, motif_prob = model.forward_motif(h_ctx_ligand[torch.tensor(current_atoms)],
torch.tensor(current_wid).to(device),
torch.tensor(current_atoms_batch).to(device))
# assemble
next_motif_smiles = [vocab.get_smiles(id) for id in next_motif_wid]
new_mol_list, new_atoms, one_atom_attach, intersection, attach_fail = model.forward_attach(mol_list, next_motif_smiles, device)
for j in range(len(mol_list)):
if ~finished[j] and ~attach_fail[j]:
# num_new_atoms
mol_list[j] = new_mol_list[j]
rotatable = torch.logical_and(torch.tensor(current_atoms_batch).bincount() == 2, torch.tensor(one_atom_attach))
rotatable = torch.logical_and(rotatable, ~torch.tensor(attach_fail))
rotatable = torch.logical_and(rotatable, ~finished).to(device)
# update motif2atoms and atom2motif
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
motif_to_atoms[j][i] = new_atoms[j]
motif_wid[j][i] = next_motif_wid[j]
for k in new_atoms[j]:
atom_to_motif[j][k] = i
'''
if k in atom_to_motif[j]:
continue
else:
atom_to_motif[j][k] = i'''
# generate initial positions
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
mol = mol_list[j]
anchor = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 1]
# positions = mol.GetConformer().GetPositions()
anchor_pos = deepcopy(pos_list[j][anchor]).to(device)
Chem.SanitizeMol(mol)
AllChem.EmbedMolecule(mol, useRandomCoords=True)
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
anchor_pos_new = mol.GetConformer(0).GetPositions()[anchor]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
'''
R, T = kabsch(np.matrix(anchor_pos), np.matrix(anchor_pos_new))
new_pos = R * np.matrix(mol.GetConformer().GetPositions()[new_idx]).T + np.tile(T, (1, len(new_idx)))
new_pos = np.array(new_pos.T)'''
new_pos = mol.GetConformer().GetPositions()[new_idx]
new_pos, _, _ = kabsch_torch(torch.tensor(anchor_pos_new, device=device), anchor_pos, torch.tensor(new_pos, device=device))
conf = mol.GetConformer()
# update curated parameters
pos_list[j] = torch.cat([pos_list[j], new_pos])
feat_list[j] = get_feat(mol_list[j]).to(device)
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[j][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[j])
# predict alpha and rotate (only change the position)
if torch.sum(rotatable) > 0 and i >= 2:
repeats = torch.tensor([len(pos) for pos in pos_list])
ligand_batch = torch.repeat_interleave(torch.arange(len(pos_list)), repeats).to(device)
slice_idx = torch.cat([torch.tensor([0]), torch.cumsum(repeats, dim=0)])
xy_index = [(np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist() for j in range(len(slice_idx) - 1) if rotatable[j]]
alpha = model.forward_alpha(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch, xy_index=torch.tensor(xy_index, device=device),
rotatable=rotatable)
rotatable_id = [id for id in range(len(mol_list)) if rotatable[id]]
xy_index = [motif_to_atoms[j][motif_id[j]] for j in range(len(slice_idx) - 1) if rotatable[j]]
x_index = [intersection[j] for j in range(len(slice_idx) - 1) if rotatable[j]]
y_index = [(set(xy_index[k]) - set(x_index[k])).pop() for k in range(len(x_index))]
for j in range(len(alpha)):
mol = mol_list[rotatable_id[j]]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
positions = deepcopy(pos_list[rotatable_id[j]])
xn_pos = positions[new_idx].float()
dir=(positions[x_index[j]] - positions[y_index[j]]).reshape(-1)
ref=positions[x_index[j]].reshape(-1)
xn_pos = rand_rotate(dir.to(device), ref.to(device), xn_pos.to(device), alpha[j], device=device)
if xn_pos.shape[0] > 0:
pos_list[rotatable_id[j]][-len(xn_pos):] = xn_pos
conf = mol.GetConformer()
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[rotatable_id[j]][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[rotatable_id[j]])
return mol_list, pos_list
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/sample.yml')
parser.add_argument('-i', '--data_id', type=int, default=0)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--outdir', type=str, default='./outputs')
parser.add_argument('--vocab_path', type=str, default='vocab.txt')
parser.add_argument('--num_workers', type=int, default=64)
args = parser.parse_args()
# Load vocab
vocab = []
for line in open(args.vocab_path):
p, _, _ = line.partition(':')
vocab.append(p)
vocab = Vocab(vocab)
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s-%d' % (config_name, args.data_id))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
# Data
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = LigandMaskAll(vocab)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
dataset, subsets = get_dataset(
config=config.dataset,
transform=transform,
)
testset = subsets['test']
data = testset[args.data_id]
center = data['ligand_center'].to(args.device)
test_set = [data for _ in range(config.sample.num_samples)]
with open(os.path.join(log_dir, 'pocket_info.txt'), 'a') as f:
f.write(data['protein_filename'] + '\n')
# Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.checkpoint, map_location=args.device)
model = FLAG(
ckpt['config'].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
vocab=vocab,
).to(args.device)
model.load_state_dict(ckpt['model'])
# my code goes here
sample_loader = DataLoader(test_set, batch_size=config.sample.batch_size,
shuffle=False, num_workers=config.sample.num_workers,
collate_fn=collate_mols)
data_list = []
try:
with torch.no_grad():
model.eval()
number = 0
number_list = []
for batch in tqdm(sample_loader):
for key in batch:
batch[key] = batch[key].to(args.device)
gen_data, pos_list = ligand_gen(batch, model, vocab, config, center, args.device)
SetMolPos(gen_data, pos_list)
for mol in gen_data:
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
data_list.extend(gen_data)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for _, mol in enumerate(gen_data):
number+=1
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % number))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
number_list.append(number)
# Calculate metrics
print([Chem.MolToSmiles(mol) for mol in data_list])
smiles = [Chem.MolFromSmiles(Chem.MolToSmiles(mol)) for mol in data_list]
qed_list = [qed(mol) for mol in smiles if mol.GetNumAtoms() >= 8]
logp_list = [MolLogP(mol) for mol in smiles]
sa_list = [compute_sa_score(mol) for mol in smiles]
Lip_list = [lipinski(mol) for mol in smiles]
print('QED %.6f | LogP %.6f | SA %.6f | Lipinski %.6f \n' % (np.average(qed_list), np.average(logp_list), np.average(sa_list), np.average(Lip_list)))
except KeyboardInterrupt:
logger.info('Terminated. Generated molecules will be saved.')
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, mol in enumerate(data_list):
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % i))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
pool = mp.Pool(args.num_workers)
vina_list = []
pro_path = './data/pdbbind_pocket10/' + os.path.join(data['pdbid'], data['pdbid']+'_pocket.pdb')
for vina_score in tqdm(pool.imap_unordered(partial(calculate_vina, pro_path=pro_path, lig_path=log_dir), number_list), total=len(number_list)):
if vina_score != None:
vina_list.append(vina_score)
pool.close()
print('Vina: ', np.average(vina_list))