A predicate is a procedure that always returns a boolean value (#true or #false). An equivalence predicate is the computational analogue of a mathematical equivalence relation; it is symmetric, reflexive, and transitive.
(eq? obj1 obj2)
, primop
Returns #true if obj1 and obj2 are definitely the same object or same values.
(eq? 'a 'a) ==> #true ; you can eq? symbols,
(eq? "a" "a") ==> #false ; but not strings
(eq? 'a 'b) ==> #false
(eq? "" "") ==> #false
(eq? #false #false) ==> #true ; same values
(eq? '() '()) ==> #true ; same values: '() is #null, #null eq #null
(eq? '(a) '(a)) ==> #false
(let ((q '(a)))
(eq? q q)) ==> #true
(eq? 2 2) ==> #true ; same values
(eq? 2 2.0) ==> #true ; 2.0 is exact(!) in Ol
(eq? 2 #i2.0) ==> #false ; '#i' - inexact prefix
(eq? 222222222222222222222
222222222222222222222) ==> #false ; long integers are objects, not values
(eq? #\A #\A) ==> #true
(eq? car car) ==> #true
(eq? (lambda (x) x)
(lambda (x) x)) ==> #true
(eq? (lambda (x) x)
(lambda (y) y)) ==> #true ; code optimizer reuses same existing functions
(eqv? obj1 obj2)
, procedure
The eqv?
procedure defines a useful equivalence relation on objects.
Briefly, it returns #true if obj1 and obj2 are normally regarded as the same object (are these objects same in the sense of eq?, or are these objects same as numbers).
(eqv? 'a 'a) ==> #true
(eqv? 'a 'b) ==> #false
(eqv? 2 2) ==> #true
(eqv? 2 2.0) ==> #true ; 2.0 is exact(!) in Ol
(eqv? 2 #i2.0) ==> #false ; '#i' - inexact prefix
(eqv? 1 #i1) ==> #false
(eqv? 100000 100000) ==> #true
(eqv? 222222222222222222222
222222222222222222222) ==> #true
(eqv? 0.33 0.33) ==> #true
(eqv? 7/3 14/6) ==> #true
(eqv? 2+3i 2+3i) ==> #true
(eqv? 0.0 +nan.0) ==> #false
(eqv? +nan.0 +nan.0) ==> #true
(eqv? '() '()) ==> #true
(eqv? #false '()) ==> #false
(eqv? "" "") ==> #false
(eqv? '#() '#()) ==> #false
(eqv? '(a) '(a)) ==> #false
(let ((q '(a)))
(eqv? q q)) ==> #true
(eqv? "a" "a") ==> #false
(eqv? #\a #\A) ==> #false
(eqv? '(b) (cdr '(a b))) ==> #false
(eqv? (cons 1 2) (cons 1 2)) ==> #false
(eqv? (lambda () 1)
(lambda () 2)) ==> #false
(eqv? (lambda (x) x)
(lambda (x) x)) ==> #true
(eqv? (lambda (x) x)
(lambda (y) y)) ==> #true
(letrec (
(f (lambda () (if (eqv? f g) 'both 'f)))
(g (lambda () (if (eqv? f g) 'both 'g))))
(eqv? f g)) ==> #false
(let ((p (lambda (x) x)))
(eqv? p p)) ==> #true
(equal? obj1 obj2)
, procedure
The equal?
procedure, when applied to pairs, vectors, strings and bytevectors, recursively compares them, returning #true when the unfoldings of its arguments into (possibly
infinite) trees are equal (in the sense of equal?
) as ordered trees, and #false otherwise.
(equal? "" "") ==> #true
(equal? '#() '#()) ==> #true
(equal? '(a) '(a)) ==> #true
(equal? "a" "a") ==> #true
(equal? #\a #\A) ==> #false
(equal? #\A #\A) ==> #true
(equal? (cons 1 2) (cons 1 2)) ==> #true
(equal? '(1 (2 (3 4)) 5)
'(1 (2 (3 4)) 5)) ==> #true
(equal? { 'name "Yuriy"
'phone 12345678 }
{ 'name "Yuriy"
'phone 12345678 }) ==> #true
(equal? [1 2 3] [1 2 3]) ==> #true
(equal? (bytevector 1 2 3)
(string 1 2 3)) ==> #false
(equal? (append '(1 2) '((7)))
'(1 2 (7))) ==> #true