-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path21_Shortest_Common_Supersequence.cpp
57 lines (50 loc) · 1.76 KB
/
21_Shortest_Common_Supersequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Question Link :- https://www.geeksforgeeks.org/problems/shortest-common-supersequence0322/1
// Shortest Common Supersequence
// T.C = O(m*n)
// S.C = O(m*n)
// Approach - 1 (Memoization)
class Solution {
public:
int t[101][101];
int LCS(string X, string Y, int m, int n) {
// base case
if (m == 0 || n == 0) {
return 0;
}
if (t[m][n] != -1) {
return t[m][n];
}
// choice diagram
if (X[m - 1] == Y[n - 1]) { // when last character is same
t[m][n] = 1 + LCS(X, Y, m - 1, n - 1); // count the number and decreament the both's string length // store the value in particular block
}
else { // when last character is not same -> pick max
t[m][n] = max(LCS(X, Y, m - 1, n), LCS(X, Y, m, n - 1)); // one take full and another by leaving last char and vice versa // store the value in particular block
}
return t[m][n];
}
int shortestCommonSupersequence(string X, string Y, int m, int n) {
memset(t, -1, sizeof(t));
return m + n - LCS(X, Y, m, n);
}
};
// Approach - 2 (Tabulation)
class Solution {
public:
int LCS(string X, string Y, int m, int n) {
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (Y[i - 1] == X[j - 1]) {
dp[i][j] = 1 + dp[i - 1][j - 1];
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[n][m];
}
int shortestCommonSupersequence(string X, string Y, int m, int n) {
return m + n - LCS(X, Y, m, n);
}
};