-
Notifications
You must be signed in to change notification settings - Fork 0
/
2_contraintes_membrane.py
269 lines (179 loc) · 4.13 KB
/
2_contraintes_membrane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# coding: utf-8
from lib_calcul_matrices import *
import numpy as np
########################## Matrices de rigiditees ##############################################
####copier coller les matrices de rigidité et les donnees d entrees
#contrainte en Mpa
SIG1_rt = 1100
SIG1_rc = -250
SIG2_rt = 35
SIG2_rc = -120
SIG6_r = 50
#Matrices de rigidite en Gpa
Q_pi_0 =Matrix([
[117.23, 2.08, 0],
[ 2.08, 5.94, 0],
[ 0, 0, 2]])
Q_pi_2 =Matrix([
[5.94, 2.08, 0],
[2.08, 117.23, 0],
[ 0, 0, 2]])
Q_pi_4 =Matrix([
[33.83, 29.83, 27.82],
[29.83, 33.83, 27.82],
[27.82, 27.82, 29.75]])
_Q_pi_4 =Matrix([
[ 33.83, 29.83, -27.82],
[ 29.83, 33.83, -27.82],
[-27.82, -27.82, 29.75]])
#Matrice de rigidite en membrane en N.m
A = Matrix([
[264420799.42, 125553547.87, 0],
[125553547.87, 375711229.97, 0],
[ 0, 0, 125008311.22]])
#Matrice des efforts en N.m
N = Matrix([10**5,0,0]).reshape(1,3)
#remplacer les info pour chaque couches exemple c0_inf0 = [angle,matrice]
#remplacer les couches inutiles par [-0.0,0,zeros(3,3)]
c1_inf0 = [pi/4,Q_pi_4]
c1_sup0 = [pi/4,Q_pi_4]
c2_inf0 = [pi/2,Q_pi_2]
c2_sup0 = [pi/2,Q_pi_2]
c3_inf0 = [-pi/4,_Q_pi_4]
c3_sup0 = [-pi/4,_Q_pi_4]
c4_inf0 = [0,Q_pi_0]
c4_sup0 = [0,Q_pi_0]
c5_inf0 = [-pi/4,_Q_pi_4]
c5_sup0 = [-pi/4,_Q_pi_4]
c6_inf0 = [pi/2,Q_pi_2]
c6_sup0 = [pi/2,Q_pi_2]
c7_inf0 = [pi/4,Q_pi_4]
c7_sup0 = [pi/4,Q_pi_4]
####Partie calcul a ne pas toucher
print()
A_1 = A.inv()
print("L'inverse de la matrice A est : ")
pprint(A_1)
eps_0 = N*A_1
eps = eps_0.T
print()
print("On en déduit grace à la relation N = A*eps donc eps = N * A-1 la matrice des deformation epsilon * ")
pprint(eps)
print()
print("les contraintes des couches dans leurs propres base sont C * eps en Mpa: ")
print()
c1 = c1_inf0[1]*eps *10**3 #le 10**3 est pour avoir des Mpa
c2 = c2_inf0[1]*eps *10**3
c3 = c3_inf0[1]*eps *10**3
c4 = c4_inf0[1]*eps *10**3
c5 = c5_inf0[1]*eps *10**3
c6 = c6_inf0[1]*eps *10**3
c7 = c7_inf0[1]*eps *10**3
print("c1")
print(c1)
print()
print("c2")
print(c2)
print()
print("c3")
print(c3)
print()
print("c4")
print(c4)
print()
print("c5")
print(c5)
print()
print("c6")
print(c6)
print()
print("c7")
print(c7)
print()
print()
print()
print()
print()
print("on rammene les contraintes dans la base d orthotropie avec un changement de base")
print()
c1_h = cdb_sigma(c1,c1_inf0[0])
c2_h = cdb_sigma(c2,c2_inf0[0])
c3_h = cdb_sigma(c3,c3_inf0[0])
c4_h = cdb_sigma(c4,c4_inf0[0])
c5_h = cdb_sigma(c5,c5_inf0[0])
c6_h = cdb_sigma(c6,c6_inf0[0])
c7_h = cdb_sigma(c7,c7_inf0[0])
print("c1")
print(c1_h)
print()
print("c2")
print(c2_h)
print()
print("c3")
print(c3_h)
print()
print("c4")
print(c4_h)
print()
print("c5")
print(c5_h)
print()
print("c6")
print(c6_h)
print()
print("c7")
print(c7_h)
print()
print()
print()
print()
print()
print("Calcul des coefficients de chargements:")
print()
print()
print("pour les critères de ruptures suivants: sig1rt = %s sig1rc = %s sig2rt = %s sig2rc = %s sig6 = %s" % (SIG1_rt, SIG1_rc, SIG2_rt, SIG2_rc, SIG6_r))
print()
print("pour c1")
cont_max(c1_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c1_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print("pour c2")
cont_max(c2_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c2_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print()
print("pour c3")
cont_max(c3_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c3_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print("pour c4")
cont_max(c4_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c4_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print()
print("pour c5")
cont_max(c5_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c5_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print()
print("pour c6")
cont_max(c6_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c6_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()
print()
print()
print()
print("pour c7")
cont_max(c7_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
tsai_hill(c7_h,SIG1_rt,SIG1_rc,SIG2_rt,SIG2_rc,SIG6_r )
print()