Skip to content

Latest commit

 

History

History
378 lines (293 loc) · 16.8 KB

README.md

File metadata and controls

378 lines (293 loc) · 16.8 KB

NGT

Neighborhood Graph and Tree for Indexing High-dimensional Data

Home / Build / Command / License / Publications / About Us

Command

Name

ngt - proximity search for high dimensional data

Synopsis

  $ ngt command [options] index [additional arguments]

Note:

When the environment variable POSIXLY_CORRECT is set on some platforms such as Cygwin or macOS, you should specifiy options before the command as follows.

  $ ngt [options] command index [additional arguments]

Description

ngt provides high-speed nearest neighbor searches against a large volume of data (several million to several 10 million items of data) in high dimensional vector data space (several ten to several thousand dimensions).

command is one of:

CREATE

Make and initialize the specified directory as an index, and insert the specified data to the index.

  $ ngt create -d no_of_dimensions [-p no_of_threads] [-b no_of_batch_processes] 
      [-i index_type] [-g graph_type] [-t edge_reduction_threshold] 
      [-e search_range_coefficient] [-E no_of_edges] [-S no_of_edges_at_search_time] 
      [-o object_type] [-D distance_function] [-n no_of_registration_data] 
      index [registration_data]

index
Specify the name of the directory for the index to be generated. The generated directory consists of multiple files for the index.

registration_data
Specify the vector data to be registered. These data shall consist of one object (data item) per line and each dimensional element shall be delimited by a space or tab. If omitted, the specified directory is just generated and initialized as the index.

-d no_of_dimensions
Specify the number of dimensions of registration data. Specification is unnecessary if each row of the registration data file consists only of dimensional elements. However, if attribute information or other types of data follow the dimensional elements, such subsequent data will be ignored based on the number of dimensions specified here.

-p no_of_threads (default = 24, recomended value = number of cores)
Specify the number of threads to be used for parallel processing at generation time.

-b no_of_batch_processes (default = recomended value = 200)
Specify the number of objects for batch processing, which is normally performed for a fixed number of objects. It is generally not necessary to specify this option.

-i index_type (g|t)
Select between creation of graph only or graph and tree.

  • g: Generate only a graph index. At search time, the search start node in the graph is randomly determined.
  • t: Generate a tree index in addition to a graph index. At search time, the search start node in the graph is determined using the tree. (default/recommended)

-g graph_type
Specifies the type of graph index.

  • a: Generate ANNG. Enables high-speed registration. (default/recommended)
  • k: Generate KNNG. Registration is very slow. (for experimental use—not recommended)
  • b: Generate BKNNG. Registration is very slow, but search has high level of performance. (for experimental use—not recommended)

-t edge_reduction_threshold (default = recomended value = 0)
Specify the increase in number of edges that acts as a criterion for executing excess-edge reduction processing. Although excess-edge reduction processing can only be used when selecting ANNG, it involves heavy processing and is essential unnecessary unless there is a need to reduce the amount of consumed memory as much as possible. Specifying 0 here prevents the execution of excess-edge reduction processing.

-e search_range_coefficient (default = recomended value = 0.1)
When specifying ANNG or BKNNG, neighboring nodes connected to an item of registration data (node) by edges are obtained by searching and combined by edges. This option specifies the magnification coefficient of the search range at search time.

-E no_of_edges (default = 10)
Specify the number of initial edges of each node at graph generation time. Once an index has been generated, the number of edges of each node will be equal to or greater than this specified number in the case of an ANNG or BKNNG and equal to this specified number in the case of a KNNG.

-S no_of_edges_at_search_time (default = 40)
Specify the number of edges at search time accompanying or following index generation. This value is used when not specifying the number of edges by the search command. It is specified to conduct searches by a number of edges less than the actual number of edges of each node in the graph. Since a large number of edges may be generated in the case of ANNG or BKNNG, limiting the number of edges can help improve search performance. Specifying 0 here indicates that the number of edges is not to be limited (that all actual edges are to be used).

-o object_type
Specify the data object type.

  • c: 1 byte unsigned integer
  • f: 4 byte floating point number (default)
  • h: 2 byte floating point number
  • q: 1 byte scalar quantization

-D distance_function
Specify the distance function as follows.

  • 1: L1 distance
  • 2: L2 distance (default)
  • E: Normalized L2 distance. The specified data are automatically normalized to be appended to the index.
  • a: Angle distance
  • A: Normalized angle distance. The specified data are automatically normalized to be appended to the index.
  • c: Cosine similarity
  • C: Normalized cosine similarity. The specified data are automatically normalized to be appended to the index.
  • h: Hamming distance. 1 byte unsigned integer should be specified for the data object type.
  • j: Jaccard distance. 1 byte unsigned integer should be specified for the data object type.
  • p: Poincare distance
  • l: Lorentz distance
  • i: Inner product (or dot product). Maximum inner-product search. Note that the distance obtained during search is not inner product values.

-n no_of_registration_data
Specify the number of data items to be registered. If not specified, all data in the specified file will be registered.

APPEND

Append the specified data to the specified index.

  $ ngt append [-p no_of_threads] [-d no_of_dimensions] [-n no_of_registration_data]
      index registration_data

index
Specify the name of the existing index.

registration_data
Specify the vector data to be registered. These data shall consist of one object (data item) per line and each dimensional element shall be delimited by a space or tab.

-p no_of_threads (default = recomended value = 24)
Specify the number of threads to be used for parallel processing at generation time.

-d no_of_dimensions
Specify the number of dimensions of registration data. Specification is unnecessary if each row of the registration data file consists only of dimensional elements. However, if attribute information or other types of data follow the dimensional elements, such subsequent data will be ignored based on the number of dimensions specified here.

-n no_of_registration_data
Specify the number of data items to be registered. If not specified, all data in the specified file will be registered.

SEARCH

Search the index using the specified query data.

  $ ngt search [-i index_type] [-e search_range_coefficient] [-n no_of_search_results] 
      [-E max_no_of_edges] [-r search_radius] index query_data

index
Specify the name of the existing index.

query_data
Specify the name of the file containing query data. This file shall consist of one item of query data per line and each dimensional element of that data item shall be delimited by a space or tab the same as registration data. Each search shall be sequentially performed when providing multiple queries.

-i index_type (g|t|s)
Select between using of graph only or graph and tree.

  • g: Use only a graph index. May be specified even if a tree exists. The search start point in the graph is randomly determined.
  • t: Use a tree index in addition to a graph index. An error occurs if no tree exists. The search start point in the graph is determined using the tree. Enables high-speed searches compared with graph only. (default/recommended)
  • s: Perform a linear search using no index.

-e search_range_coefficient (default = recomended value = 0.1)
Specify the magnification coefficient (epsilon) of the search range. A larger value means greater accuracy but slower searching, while a smaller value means a drop in accuracy but faster searching. While it is desirable to adjust this value within the range of 0 - 0.3, a negative value may also be specified.

-n no_of_search_results (default: 20)
Specify the number of search results.

-E max_no_of_edges (default = value specified with the create command or 40)
Specify the maximum number of edges to be used in the search. This option is specified when conducting a search with fewer edges than the number of edges of each node on the graph. Since a large number of edges can be generated in the case of an ANNG or BKNNG, limiting the number of edges in this way tends to improve search performance. Specifying zero here indicates no limitation of the number of edges (use all actual edges).

-r search_radius (default = infinite circle)
Specify the search range in terms of the radius of a circle.

REMOVE

Remove the specified object from the index.

  $ ngt remove [-d object_id_specification_method] index object_id

index
Specify the name of the existing index.

object_id
Specify the ID of the object to be removed.

-d object_id_specification_method (f|d) (default = f)
Specify the method for specifying the ID of the object to be removed. Specifying f indicates that the following object-ID specification is to be treated as a file name. That file shall consist of one entry per line, each indicting the ID of an object to be removed. Specifying d indicates that the following object-ID specification is to be treated simply as an object-ID referring to the object to be removed.

PRUNE (not recommended)

Prune long edges in the graph of the index to build PANNG. Although this command shortens the query time, to further shorten the query time, the path adjustment of the following command reconstruct graph is recommended.

  $ ngt prune -e no_of_forcedly_pruned_edges -s no_of_selectively_pruned_edge index

index
Specify the name of the existing index.

-e no_of_forcedly_pruned_edges
Specify the maximum number of edges for each node. Excess edges over the specified number are removed for each node in descending of edge length.

-s no_of_selectively_pruned_edge
Specify the number (rank) of edges that should not be removed for each node. If the rank of an edge in ascending order of edge length for each node exceeds the specified number and the edge has alternative paths, the edge is removed.

no_of_forcedly_pruned_edges should be greater than no_of_selectively_pruned_edges.

RECONSTRUCT GRAPH

Construct the index with the reconstructed graph from the specified index.

  $ ngt reconstruct-graph [-m shortcut_mode] [-s search_optimization_mode] [-I graph_type] -o no_of_outgoing_edges -i no_of_incoming_edges input_index reconstructed_index

input_index
Specify the name of the existing index.

reconstructed_index
Specify the name of the reconstructed index.

-o no_of_outgoing_edges
Specify the number of edges for each node to add to the reconstructed graph from the input graph. The specified number also means the lower bound of the outdegrees of the reconstructed graph.

-i no_of_incoming_edges
Specify the number of edges for each node to add to the reconstructed graph from the input graph. Unlike no_of_ooutgoing_edges, after the direction of the edges are reveresed, the edges are added to the reconstructed graph. The specified number also means the lower bound of the indegrees of the reconstructed graph.

-m mode
Specify the mode of the shortcut reduction.

  • S: Shortcut reduction (default)
  • s: No shortcut reduction

-s mode
Specify the mode of the search parameter optimization.

  • s: Search edge parameter optimization
  • p: Prefetch parameter optimization
  • a: Accuracy table generation
  • -: All of the above (default)

-I graph_type
Specify the type of the specified index as input_index. For not ANNG, the index is converted to ANNG before graph reconstruction.

  • a: ANNG
  • r: RANNG. ANNG with reduced shortcut edges.
  • i: IANNG. ANNG with reduced excess edges.
  • R: RIANNG. ANNG with reduced shortcut or excess edges.
  • o: The others

Examples of using ngt command

Create

Construct an index for 128-dimensional, 1-byte-integer data:

  $ cd (NGT_TOP_DIR)
  $ ngt create -d 128 -o c index ./data/sift-dataset-5k.tsv
  Data loading time=0.160748 (sec) 160.748 (msec)
  # of objects=5000
  Index creation time=0.379659 (sec) 379.659 (msec)

Search

Perform a neighborhood search by three queries specified in a file:

  $ cd (NGT_TOP_DIR)
  $ ngt search -n 20 index ./data/sift-query-3.tsv
  Query No.1
  Rank	ID	Distance
  1	3031	239.332
  2	4079	240.002
  3	3164	244.504
  4	3718	246.763
  5	157	251.094
  6	2422	251.185
  7	1313	251.34
  8	379	252.446
  9	3521	260.158
  10	2594	261.132
  11	4627	262.381
  12	2159	263.471
  13	3519	264.909
  14	1764	265.136
  15	4400	266.156
  16	2717	266.914
  17	3168	269.637
  18	4236	270.673
  19	4700	272.725
  20	679	272.973
  Query Time= 0.000472 (sec), 0.472 (msec)
  Query No.2
  Rank	ID	Distance
  1	2726	291.983
  2	924	296.987
  3	3638	298.585
  4	858	300.376
  5	1453	306.805
  6	174	307.789
  7	2992	308.485
  8	2980	308.93
  9	1525	309.49
  10	244	309.816
  11	910	310.446
  12	3310	310.585
  13	2433	311.482
  14	1633	311.735
  15	3761	312.44
  16	407	313.252
  17	4546	313.876
  18	697	315.108
  19	34	315.563
  20	2189	316.193
  Query Time= 0.000478 (sec), 0.478 (msec)
  Query No.3
  Rank	ID	Distance
  1	762	194.286
  2	1046	212.695
  3	4906	215.244
  4	2905	216.539
  5	4142	219.479
  6	1879	219.616
  7	4398	223.352
  8	3842	223.468
  9	233	224.127
  10	2794	224.366
  11	2476	224.804
  12	1848	225.803
  13	3364	226.561
  14	4098	226.74
  15	3023	228.884
  16	4113	229.325
  17	1036	232.852
  18	1740	233.144
  19	2302	233.818
  20	2440	233.91
  Query Time= 0.00018 (sec), 0.18 (msec)
  Average Query Time= 0.000376667 (sec), 0.376667 (msec), (0.00113/3)

How to construct the indexes for our publications

$ ngt create -i t -g a -S 0 -e 0.1 -E no_of_edges -d dimensionality_of_data -o data_type -D distatnce_type anng-index vector-data.dat
$ ngt reconstruct-graph -m S -o outdegree -i indegree anng-index onng-index

e.g.

$ ngt create -i t -g a -S 0 -e 0.1 -E 100 -d 128 -o c -D 2 anng-index vector-data.dat
$ ngt reconstruct-graph -m S -o 10 -i 120 anng-index onng-index
$ ngt create -i g|t -g a -S 0 -e 0.1 -E no_of_edges -d dimensionality_of_data -o data_type -D distatnce_type panng-index vector-data.dat
$ ngt prune -e no_of_forcedly_pruned_edges -s no_of_selectively_pruned_edges panng-index

e.g.

$ ngt create -i t -g a -S 0 -e 0.1 -E 10 -d 128 -o c -D 2 panng-index vector-data.dat
$ ngt prune -e 60 -s 30 panng-index
$ ngt create -i t -g a -S 0 -e 0.1 -E no_of_edges(k) -d dimensionality_of_data -o data_type -D distance_type anngt-index vector-data.dat

e.g.

$ ngt create -i t -g a -S 0 -e 0.1 -E 16 -d 128 -o c -D 2 anngt-index vector-data.dat
$ ngt create -i g -g a -S 0 -e 0.1 -E no_of_edges(k) -d dimensionality_of_data -o data_type -D distance_type anng-index vector-data.dat

e.g.

$ ngt create -i g -g a -S 0 -e 0.1 -E 16 -d dimensionality_of_data -o data_type -D distance_type anng-index vector-data.dat

KNNG

$ ngt create -i g -g k -S 0 -E no_of_edges(k) -d dimensionality_of_data -o data_type -D distance_type knng-index vector-data.dat

e.g.

$ ngt create -i g -g k -S 0 -E 20 -d 128 -o c -D 2 knng-index vector-data.dat