-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathreconstruction.py
142 lines (118 loc) · 5.31 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
# @Author : xuelun
import os
import torch
import warnings
import numpy as np
from tqdm import tqdm
from os.path import join
from pathlib import Path
from argparse import ArgumentParser
from hloc import pairs_from_exhaustive
from hloc import extract_features, match_features, match_dense, reconstruction
from hloc.utils import segment
from hloc.utils.io import read_image
from hloc.match_dense import ImagePairDataset
from networks.lightglue.superpoint import SuperPoint
from networks.lightglue.models.matchers.lightglue import LightGlue
from networks.mit_semseg.models import ModelBuilder, SegmentationModule
def segmentation(images, segment_root, matcher_conf):
# initial device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# initial segmentation mode
net_encoder = ModelBuilder.build_encoder(
arch='resnet50dilated',
fc_dim=2048,
weights='weights/encoder_epoch_20.pth')
net_decoder = ModelBuilder.build_decoder(
arch='ppm_deepsup',
fc_dim=2048,
num_class=150,
weights='weights/decoder_epoch_20.pth',
use_softmax=True)
crit = torch.nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
segmentation_module = segmentation_module.to(device).eval()
# initial data reader
dataset = ImagePairDataset(None, matcher_conf["preprocessing"], None)
# Segment images
image_list = sorted(os.listdir(images))
with torch.no_grad():
for img in tqdm(image_list):
segment_path = join(segment_root, '{}.npy'.format(img[:-4]))
if not os.path.exists(segment_path):
rgb = read_image(images / img, dataset.conf.grayscale)
mask = segment(rgb, 1920, device, segmentation_module)
np.save(segment_path, mask)
def main(scene_name, version):
# Setup
images = Path('inputs') / scene_name / 'images'
outputs = Path('outputs') / scene_name / version
outputs.mkdir(parents=True, exist_ok=True)
os.environ['GIMRECONSTRUCTION'] = str(outputs)
segment_root = Path('outputs') / scene_name / 'segment'
segment_root.mkdir(parents=True, exist_ok=True)
sfm_dir = outputs / 'sparse'
mvs_path = outputs / 'dense'
database_path = sfm_dir / 'database.db'
image_pairs = outputs / 'pairs-near.txt'
feature_conf = matcher_conf = None
if version == 'gim_dkm':
feature_conf = None
matcher_conf = match_dense.confs[version]
elif version == 'gim_lightglue':
feature_conf = extract_features.confs['gim_superpoint']
matcher_conf = match_features.confs[version]
# Find image pairs via pair-wise image
exhaustive_pairs = pairs_from_exhaustive.main(image_pairs, image_list=images)
segmentation(images, segment_root, matcher_conf)
# Extract and match local features
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
if version == 'gim_dkm':
feature_path, match_path = match_dense.main(matcher_conf, image_pairs,
images, outputs)
elif version == 'gim_lightglue':
checkpoints_path = join('weights', 'gim_lightglue_100h.ckpt')
detector = SuperPoint({
'max_num_keypoints': 2048,
'force_num_keypoints': True,
'detection_threshold': 0.0,
'nms_radius': 3,
'trainable': False,
})
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('model.'):
state_dict.pop(k)
if k.startswith('superpoint.'):
state_dict[k.replace('superpoint.', '', 1)] = state_dict.pop(k)
detector.load_state_dict(state_dict)
model = LightGlue({
'filter_threshold': 0.1,
'flash': False,
'checkpointed': True,
})
state_dict = torch.load(checkpoints_path, map_location='cpu')
if 'state_dict' in state_dict.keys(): state_dict = state_dict['state_dict']
for k in list(state_dict.keys()):
if k.startswith('superpoint.'):
state_dict.pop(k)
if k.startswith('model.'):
state_dict[k.replace('model.', '', 1)] = state_dict.pop(k)
model.load_state_dict(state_dict)
feature_path = extract_features.main(feature_conf, images, outputs,
model=detector)
match_path = match_features.main(matcher_conf, image_pairs,
feature_conf['output'], outputs,
model=model)
# sparse reconstruction
reconstruction.main(sfm_dir, images, image_pairs, feature_path, match_path)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--scene_name', type=str)
parser.add_argument('--version', type=str, choices={'gim_dkm', 'gim_lightglue'},
default='gim_dkm')
args = parser.parse_args()
main(args.scene_name, args.version)