-
Notifications
You must be signed in to change notification settings - Fork 58
/
train_net.py
235 lines (206 loc) · 7.93 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import logging
import os
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import time
import datetime
import json
import numpy as np
from fvcore.common.timer import Timer
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
)
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import (
COCOEvaluator,
LVISEvaluator,
inference_on_dataset,
print_csv_format,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
from unidet.config import add_unidet_config
from unidet.data.custom_dataset_dataloader import build_custom_train_loader
from unidet.data.multi_dataset_dataloader import build_multi_dataset_train_loader
from unidet.evaluation.oideval import OIDEvaluator
from unidet.evaluation.multi_dataset_evaluator import get_unified_evaluator
logger = logging.getLogger("detectron2")
def do_test(cfg, model):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
if cfg.MULTI_DATASET.ENABLED:
# TODO: refactor
try:
model.set_eval_dataset(dataset_name)
except:
try:
model.module.set_eval_dataset(dataset_name)
except:
try:
model.model.set_eval_dataset(dataset_name)
except:
print('set eval dataset failed.')
data_loader = build_detection_test_loader(cfg, dataset_name)
output_folder = os.path.join(
cfg.OUTPUT_DIR, "inference_{}".format(dataset_name))
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if cfg.MULTI_DATASET.UNIFIED_EVAL:
evaluator = get_unified_evaluator(
evaluator_type, dataset_name, cfg, True, output_folder)
# print('evaluator', evaluator)
else:
if evaluator_type == "lvis":
evaluator = LVISEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'oid':
evaluator = OIDEvaluator(dataset_name, cfg, True, output_folder)
else:
evaluator = COCOEvaluator(dataset_name, cfg, True, output_folder)
results[dataset_name] = inference_on_dataset(
model, data_loader, evaluator)
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(
dataset_name))
print_csv_format(results[dataset_name])
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg, model, resume=False):
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(
cfg.MODEL.WEIGHTS, resume=resume,
).get("iteration", -1) + 1
)
if cfg.SOLVER.RESET_ITER:
logger.info('Reset loaded iteration. Start training from iteration 0.')
start_iter = 0
max_iter = cfg.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
if cfg.MULTI_DATASET.ENABLED:
data_loader = build_multi_dataset_train_loader(cfg)
dataset_count = {k: torch.tensor(0).to(comm.get_local_rank()) for k in cfg.MULTI_DATASET.DATASETS}
else:
data_loader = build_custom_train_loader(cfg)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
step_timer = Timer()
data_timer = Timer()
start_time = time.perf_counter()
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
data_time = data_timer.seconds()
storage.put_scalars(data_time=data_time)
step_timer.reset()
iteration = iteration + 1
storage.step()
loss_dict = model(data)
losses = sum(
loss for k, loss in loss_dict.items())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() \
for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(
total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
if cfg.MULTI_DATASET.ENABLED:
for b in data:
dataset_count[cfg.MULTI_DATASET.DATASETS[b['dataset_source']]] += 1
dataset_count_reduced = {k: v for k, v in \
comm.reduce_dict(dataset_count).items()}
if comm.is_main_process():
storage.put_scalars(**dataset_count_reduced)
step_time = step_timer.seconds()
storage.put_scalars(time=step_time)
data_timer.reset()
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and iteration % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter
):
do_test(cfg, model)
comm.synchronize()
if iteration - start_iter > 5 and \
(iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
total_time = time.perf_counter() - start_time
logger.info(
"Total training time: {}".format(
str(datetime.timedelta(seconds=int(total_time)))))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_unidet_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if '/auto' in cfg.OUTPUT_DIR:
file_name = os.path.basename(args.config_file)[:-5]
cfg.OUTPUT_DIR = cfg.OUTPUT_DIR.replace('/auto', '/{}'.format(file_name))
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR))
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=True
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)