diff --git a/README.md b/README.md index 4917429..854f843 100644 --- a/README.md +++ b/README.md @@ -66,31 +66,38 @@ The example below assumes you already have a Django project set up with a single from rest_pandas import PandasView from .models import TimeSeries class TimeSeriesView(PandasView): + # Django REST Framework 2.4 model = TimeSeries + # Django REST Framework 3+ + queryset = TimeSeries.objects.all() + serializer_class = TimeSeriesSerializer + # In response to get(), the underlying Django REST Framework ListAPIView - # will load the default queryset (self.model.objects.all()) and then pass - # it to the following function. + # will load the queryset and then pass it to the following function. def filter_queryset(self, qs): # At this point, you can filter queryset based on self.request or other # settings (useful for limiting memory usage) return qs - # Then, the included PandasSerializer will serialize the queryset into a - # simple list of dicts (using the DRF ModelSerializer). To customize - # which fields to include, subclass PandasSerializer and set the - # appropriate ModelSerializer options. Then, set the serializer_class - # property on the view to your PandasSerializer subclass. + # Then, the default serializer (typically a DRF ModelSerializer) should + # serialize each row in the queryset into a simple dict format. To + # customize which fields to include, create a subclass of ModelSerializer + # and assign it to serializer_class on your view. + + # Next, the included PandasSerializer will load the ModelSerializer result + # into a DataFrame and pass it to the following function on the view. - # Next, the PandasSerializer will load the ModelSerializer result into a - # DataFrame and pass it to the following function on the view. - def transform_dataframe(self, dataframe): # Here you can transform the dataframe based on self.request # (useful for pivoting or computing statistics) return dataframe - + + # For more control over dataframe creation, subclass PandasSerializer and + # set pandas_serializer_class on the view. (Or set list_serializer_class + # on your ModelSerializer subclass' Meta class if you're using DRF 3). + # Finally, the included Renderers will process the dataframe into one of # the output formats below. ``` diff --git a/README.rst b/README.rst index 2ba1952..b6836f1 100644 --- a/README.rst +++ b/README.rst @@ -1,12 +1,13 @@ Django REST Pandas ================== -*Django REST Framework + pandas = A Model-driven Visualization API* +`Django REST Framework `__ + `pandas `__ = A Model-driven Visualization API +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Django REST Pandas** (DRP) provides a simple way to generate and serve `pandas `__ DataFrames via the `Django REST Framework `__. The resulting API can -serve up CSV (and a number of other formats) +serve up CSV (and a number of `other formats <#supported-formats>`__) for consumption by a client-side visualization tool like `d3.js `__. @@ -94,17 +95,23 @@ Framework. This means clients can specify a format via ``Accepts: text/csv`` or by appending ``.csv`` to the URL (if the URL configuration below is used). -.. csv-table:: - :header: "Format", "Content Type", "pandas Dataframe Function", "Notes" - :widths: 50, 150, 70, 500 - - CSV,``text/csv``,``to_csv()``, - TXT,``text/plain``,``to_csv()``,"Useful for testing, as most browsers will download a CSV file instead of displaying it" - JSON,``application/json``,``to_json()``, - XLSX,``application/vnd.openxml...sheet``,``to_excel()``, - XLS,``application/vnd.ms-excel``,``to_excel()``, - PNG,``image/png``,``plot()``,"Currently not very customizable, but a simple way to view the data as an image." - SVG,``image/svg``,``plot()``,"Eventually these could become a fallback for clients that can't handle d3.js" ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| Format | Content Type | pandas DataFrame Function | Notes | ++==========+=======================================+=============================+==========================================================================================+ +| CSV | ``text/csv`` | ``to_csv()`` | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| TXT | ``text/plain`` | ``to_csv()`` | Useful for testing, as most browsers will download a CSV file instead of displaying it | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| JSON | ``application/json`` | ``to_json()`` | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| XLSX | ``application/vnd.openxml...sheet`` | ``to_excel()`` | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| XLS | ``application/vnd.ms-excel`` | ``to_excel()`` | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| PNG | ``image/png`` | ``plot()`` | Currently not very customizable, but a simple way to view the data as an image. | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ +| SVG | ``image/svg`` | ``plot()`` | Eventually these could become a fallback for clients that can't handle d3.js | ++----------+---------------------------------------+-----------------------------+------------------------------------------------------------------------------------------+ See the implementation notes below for more details. @@ -130,31 +137,38 @@ a single ``TimeSeries`` model. from rest_pandas import PandasView from .models import TimeSeries class TimeSeriesView(PandasView): + # Django REST Framework 2.4 model = TimeSeries + # Django REST Framework 3+ + queryset = TimeSeries.objects.all() + serializer_class = TimeSeriesSerializer + # In response to get(), the underlying Django REST Framework ListAPIView - # will load the default queryset (self.model.objects.all()) and then pass - # it to the following function. + # will load the queryset and then pass it to the following function. def filter_queryset(self, qs): # At this point, you can filter queryset based on self.request or other # settings (useful for limiting memory usage) return qs - # Then, the included PandasSerializer will serialize the queryset into a - # simple list of dicts (using the DRF ModelSerializer). To customize - # which fields to include, subclass PandasSerializer and set the - # appropriate ModelSerializer options. Then, set the serializer_class - # property on the view to your PandasSerializer subclass. + # Then, the default serializer (typically a DRF ModelSerializer) should + # serialize each row in the queryset into a simple dict format. To + # customize which fields to include, create a subclass of ModelSerializer + # and assign it to serializer_class on your view. + + # Next, the included PandasSerializer will load the ModelSerializer result + # into a DataFrame and pass it to the following function on the view. - # Next, the PandasSerializer will load the ModelSerializer result into a - # DataFrame and pass it to the following function on the view. - def transform_dataframe(self, dataframe): # Here you can transform the dataframe based on self.request # (useful for pivoting or computing statistics) return dataframe - + + # For more control over dataframe creation, subclass PandasSerializer and + # set pandas_serializer_class on the view. (Or set list_serializer_class + # on your ModelSerializer subclass' Meta class if you're using DRF 3). + # Finally, the included Renderers will process the dataframe into one of # the output formats below.