-
Notifications
You must be signed in to change notification settings - Fork 0
/
tiler.py
205 lines (164 loc) · 5.88 KB
/
tiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import cv2
import numpy as np
import os
from collections import defaultdict
from tqdm import tqdm
from multiprocessing import Pool
import math
import conf
# number of colors per image
COLOR_DEPTH = conf.COLOR_DEPTH
# tiles scales
RESIZING_SCALES = conf.RESIZING_SCALES
# number of pixels shifted to create each box (x,y)
PIXEL_SHIFT = conf.PIXEL_SHIFT
# multiprocessing pool size
POOL_SIZE = conf.POOL_SIZE
# if tiles can overlap
OVERLAP_TILES = conf.OVERLAP_TILES
# reduces the number of colors in an image
def color_quantization(img, n_colors):
return np.round(img / 255 * n_colors) / n_colors * 255
# returns an image given its path
def read_image(path):
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
img = color_quantization(img.astype('float'), COLOR_DEPTH)
return img.astype('uint8')
# scales an image
def resize_image(img, ratio):
img = cv2.resize(img, (int(img.shape[1] * ratio), int(img.shape[0] * ratio)))
return img
# the most frequent color in an image and its relative frequency
def mode_color(img, ignore_alpha=False):
counter = defaultdict(int)
total = 0
for y in img:
for x in y:
if len(x) < 4 or ignore_alpha or x[3] != 0:
counter[tuple(x[:3])] += 1
else:
counter[(-1, -1, -1)] += 1
total += 1
if total > 0:
mode_color = max(counter, key=counter.get)
if mode_color == (-1, -1, -1):
return None, None
else:
return mode_color, counter[mode_color] / total
else:
return None, None
# displays an image
def show_image(img, wait=True):
cv2.imshow('img', img)
if wait:
cv2.waitKey(0)
else:
cv2.waitKey(1)
# load and process the tiles
def load_tiles(paths):
print('Loading tiles')
tiles = defaultdict(list)
for path in paths:
if os.path.isdir(path):
for tile_name in tqdm(os.listdir(path)):
tile = read_image(os.path.join(path, tile_name))
mode, rel_freq = mode_color(tile, ignore_alpha=True)
if mode is not None:
for scale in RESIZING_SCALES:
t = resize_image(tile, scale)
res = tuple(t.shape[:2])
tiles[res].append({
'tile': t,
'mode': mode,
'rel_freq': rel_freq
})
# with open('tiles.pickle', 'wb') as f:
# pickle.dump(tiles, f)
# load pickle with tiles (one file only)
# else:
# with open(path, 'rb') as f:
# tiles = pickle.load(f)
return tiles
# returns the boxes (image and start pos) from an image, with 'res' resolution
def image_boxes(img, res):
if not PIXEL_SHIFT:
shift = np.flip(res)
else:
shift = PIXEL_SHIFT
boxes = []
for y in range(0, img.shape[0], shift[1]):
for x in range(0, img.shape[1], shift[0]):
boxes.append({
'img': img[y:y + res[0], x:x + res[1]],
'pos': (x, y)
})
return boxes
# euclidean distance between two colors
def color_distance(c1, c2):
c1_int = [int(x) for x in c1]
c2_int = [int(x) for x in c2]
return math.sqrt((c1_int[0] - c2_int[0]) ** 2 + (c1_int[1] - c2_int[1]) ** 2 + (c1_int[2] - c2_int[2]) ** 2)
# returns the most similar tile to a box (in terms of color)
def most_similar_tile(box_mode_freq, tiles):
if not box_mode_freq[0]:
return 0, np.zeros(shape=tiles[0]['tile'].shape)
else:
min_distance = None
min_tile_img = None
for t in tiles:
dist = (1 + color_distance(box_mode_freq[0], t['mode'])) / box_mode_freq[1]
if min_distance is None or dist < min_distance:
min_distance = dist
min_tile_img = t['tile']
return min_distance, min_tile_img
# builds the boxes and finds the best tile for each one
def get_processed_image_boxes(image_path, tiles):
print('Getting and processing boxes')
img = read_image(image_path)
pool = Pool(POOL_SIZE)
all_boxes = []
for res, ts in tqdm(sorted(tiles.items(), reverse=True)):
boxes = image_boxes(img, res)
modes = pool.map(mode_color, [x['img'] for x in boxes])
most_similar_tiles = pool.starmap(most_similar_tile, zip(modes, [ts for x in range(len(modes))]))
i = 0
for min_dist, tile in most_similar_tiles:
boxes[i]['min_dist'] = min_dist
boxes[i]['tile'] = tile
i += 1
all_boxes += boxes
return all_boxes, img.shape
# places a tile in the image
def place_tile(img, box):
p1 = np.flip(box['pos'])
p2 = p1 + box['img'].shape[:2]
img_box = img[p1[0]:p2[0], p1[1]:p2[1]]
mask = box['tile'][:, :, 3] != 0
mask = mask[:img_box.shape[0], :img_box.shape[1]]
if OVERLAP_TILES or not np.any(img_box[mask]):
img_box[mask] = box['tile'][:img_box.shape[0], :img_box.shape[1], :][mask]
# tiles the image
def create_tiled_image(boxes, res, render=False):
print('Creating tiled image')
img = np.zeros(shape=(res[0], res[1], 4), dtype=np.uint8)
for box in tqdm(sorted(boxes, key=lambda x: x['min_dist'], reverse=OVERLAP_TILES)):
place_tile(img, box)
if render:
show_image(img, wait=False)
return img
# main
def main(filename, model):
image_path = filename
tiles_paths = model.split(" ")
for path in tiles_paths:
print("1")
if not os.path.exists(path):
print('Tiles folder not found')
exit(-1)
tiles = load_tiles(tiles_paths)
boxes, original_res = get_processed_image_boxes(image_path, tiles)
img = create_tiled_image(boxes, original_res, render=conf.RENDER)
cv2.imwrite(conf.OUT, img)
return img