-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_skipgram.py
212 lines (179 loc) · 7.73 KB
/
train_skipgram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import math
import random
import numpy as np
import tensorflow as tf
import pandas as pd
from matplotlib import pylab
from sklearn.manifold import TSNE
# 1. Read data
csv = pd.read_csv('data/steam-200k.csv', header=None, index_col=None,
names=['user_id', 'game', 'action', 'hours', 'other'])
# 1a. We might consider just play actions as relevant, or both play and purchase
# games = list(csv[csv.action == 'play'].game.unique())
idx_to_game = list(csv.game.unique())
game_to_idx = {}
for idx, game in enumerate(idx_to_game):
game_to_idx[game] = idx
# There are 5155 unique games in the data set.
print('There are {0} unique games in the data set.'.format(len(idx_to_game)))
vocabulary_size = len(idx_to_game)
# 2. Create training data set. Games for a single user will be similar to sentences in text.
# A single user game set is considered as a context.
pre_data = {}
for index, row in csv.iterrows():
if row.user_id not in pre_data:
pre_data[row.user_id] = set()
# if game_to_idx[row.game] not in data[row.user_id]:
pre_data[row.user_id].add(game_to_idx[row.game])
data = []
for x in pre_data.values():
data.append(list(x))
'''
{1024, 825}
['XCOM Enemy Unknown', 'Aliens vs. Predator']
{3397, 966, 624, 528, 498, 1075, 1076, 1077, 187}
['9.03m', 'Happy Wars', 'Brick-Force', 'Unturned', 'Terraria', 'Overlord', 'Overlord Raising Hell', 'Overlord II', 'Trine']
{23}
['Robocraft']
{618}
['SMITE']
'''
random_user_sample = random.sample(data, 4)
for x in random_user_sample:
print(x)
print([idx_to_game[y] for y in x])
# 3. Batch generating function
# Generate data randomly
def generate_batch_data(game_sets, batch_size):
# Fill up data batch
batch_data = []
label_data = []
while len(batch_data) < batch_size:
# select random set to start, skip sets smaller than 3
rand_list = random.choice(game_sets)
random.shuffle(rand_list)
if len(rand_list) < 3:
continue
# Randomly select a game from the set as the target
label = random.choice(rand_list)
tuples = []
for x in rand_list:
for y in rand_list:
if x != label and y != label and x != y:
tuples.append((label, x))
tuples.append((label, y))
if len(tuples) > batch_size:
break
# extract batch and labels
batch, labels = [list(x) for x in zip(*tuples)]
batch_data.extend(batch[:batch_size])
label_data.extend(labels[:batch_size])
# Trim batch and label at the end
batch_data = batch_data[:batch_size]
label_data = label_data[:batch_size]
# Convert to numpy array
batch_data = np.array(batch_data)
label_data = np.transpose(np.array([label_data]))
return batch_data, label_data
sample_batch_data, sample_label_data = generate_batch_data(data, 8)
for x, y in zip(sample_batch_data, sample_label_data):
print(x, '->', y)
print(idx_to_game[x], '->', idx_to_game[y[0]])
# 4. Model
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(range(valid_window), valid_size))
num_sampled = 32 # Number of negative examples to sample.
# General defines
context_window = 2 * skip_window
num_labels = batch_size / context_window
graph = tf.Graph()
with graph.as_default():
# Input data.
train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.float32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Variables.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
biases = tf.Variable(tf.zeros([vocabulary_size]))
# Model.
# Look up embeddings for inputs.
final_embed = tf.nn.embedding_lookup(embeddings, train_dataset)
# Compute the softmax loss, using a sample of the negative labels each time.
print('softmax_weights: {}'.format(weights.get_shape().as_list()))
print('softmax_biases: {}'.format(biases.get_shape().as_list()))
print('final_embed: {}'.format(final_embed.get_shape().as_list()))
#loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, train_labels, final_embed, num_sampled, vocabulary_size))
# Get loss from prediction
loss = tf.reduce_mean(tf.nn.nce_loss(weights, biases, train_labels, final_embed, num_sampled, vocabulary_size))
# Optimizer.
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
# Compute the similarity between mini-batch examples and all embeddings.
# We use the cosine distance:
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))
# train_writer = tf.summary.FileWriter('logs/train', graph)
num_steps = 100001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialised')
average_loss = 0
for step in range(num_steps):
batch_data, batch_labels = generate_batch_data(data, batch_size)
feed_dict = {train_dataset: batch_data, train_labels: batch_labels}
_, l = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += l
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step', step, ':', average_loss)
average_loss = 0
# note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = idx_to_game[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log = "Nearest to %s:" % valid_word
for k in range(top_k):
close_word = idx_to_game[nearest[k]]
log = "%s %s," % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()
num_points = 400
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, metric='cosine')
two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points + 1, :])
def plot(embeddings, labels):
assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
pylab.figure(figsize=(64, 64)) # in inches
for i, label in enumerate(labels):
x, y = embeddings[i, :]
pylab.scatter(x, y)
pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
ha='right', va='bottom')
pylab.savefig('visuals/tsne_skipgram.png', bbox_inches='tight')
words = [idx_to_game[i] for i in range(1, num_points + 1)]
plot(two_d_embeddings, words)
# Save data
pickle_data = {
'embeddings': final_embeddings,
'idx_to_game': idx_to_game,
'game_to_idx': game_to_idx
}
np.save('saves/embeddings_skipgram.npy', pickle_data)
print('Data saved to embeddings_skipgram.npy')