-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssd_mobilenetv2_fpn.py
executable file
·336 lines (264 loc) · 11.2 KB
/
ssd_mobilenetv2_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from layers import *
from data import voc, coco
import os
import mobilenetv2_fpn as mobilenetv2
import numpy
class SSD(nn.Module):
"""Single Shot Multibox Architecture
The network is composed of a base VGG network followed by the
added multibox conv layers. Each multibox layer branches into
1) conv2d for class conf scores
2) conv2d for localization predictions
3) associated priorbox layer to produce default bounding
boxes specific to the layer's feature map size.
See: https://arxiv.org/pdf/1512.02325.pdf for more details.
Args:
phase: (string) Can be "test" or "train"
size: input image size
base: VGG16 layers for input, size of either 300 or 500
extras: extra layers that feed to multibox loc and conf layers
head: "multibox head" consists of loc and conf conv layers
"""
def __init__(self, phase, size, base, extras, head, num_classes):
super(SSD, self).__init__()
self.phase = phase
self.num_classes = num_classes
# self.cfg = (coco, voc)[num_classes == 21]
self.cfg = (coco, voc)[num_classes == 2]
self.priorbox = PriorBox(self.cfg)
#self.priors = Variable(self.priorbox.forward(), volatile=True)
with torch.no_grad():
self.priors = Variable(self.priorbox.forward())
# print('self.priors.size():', self.priors.size())
self.size = size
# SSD network
self.mobilenet = base
# self.neck = neck
# Layer learns to scale the l2 normalized features from conv4_3
self.L2Norm = L2Norm(512, 20)
self.extras = nn.ModuleList(extras)
self.fpn = PyramidFeatures(128, 320)
self.loc = nn.ModuleList(head[0])
self.conf = nn.ModuleList(head[1])
if phase == 'test':
self.softmax = nn.Softmax(dim=-1)
self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
def forward(self, x):
"""Applies network layers and ops on input image(s) x.
Args:
x: input image or batch of images. Shape: [batch,3,300,300].
Return:
Depending on phase:
test:
Variable(tensor) of output class label predictions,
confidence score, and corresponding location predictions for
each object detected. Shape: [batch,topk,7]
train:
list of concat outputs from:
1: confidence layers, Shape: [batch*num_priors,num_classes]
2: localization layers, Shape: [batch,num_priors*4]
3: priorbox layers, Shape: [2,num_priors*4]
"""
sources = list()
loc = list()
conf = list()
# apply vgg up to conv4_3 relu
x = self.mobilenet.conv1(x)
x = self.mobilenet.bn1(x)
x = self.mobilenet.activation(x)
for i in self.mobilenet.bottlenecks[:5]:
# x = self.mobilenet[i](x)
x = i(x)
#s = self.L2Norm(x)
# print('x :5 shape: ', x.shape) # torch.Size([1, 128, 19, 19])
sources.append(x)
# apply vgg up to fc7
for i in self.mobilenet.bottlenecks[5:]:
# x = self.mobilenet[i](x)
x = i(x)
# print('x 5: shape: ', x.shape) # torch.Size([1, 320, 10, 10])
sources.append(x)
x = self.mobilenet.conv_last(x)
x = self.mobilenet.bn_last(x)
x = self.mobilenet.activation(x)
# sources.append(x)
features = self.fpn(sources)
# apply extra layers and cache source layer outputs
for k, v in enumerate(self.extras):
x = v(x)
if k % 2 == 1:
features.append(x)
# apply multibox head to source layers
for (x, l, c) in zip(features, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == "test":
output = self.detect(
loc.view(loc.size(0), -1, 4), # loc preds
self.softmax(conf.view(conf.size(0), -1,
self.num_classes)), # conf preds
# torch.sigmoid(conf.view(conf.size(0), -1, ## sigmoid prediction
# self.num_classes)),
self.priors.type(type(x.data)) # default boxes
)
else:
output = (
loc.view(loc.size(0), -1, 4),
conf.view(conf.size(0), -1, self.num_classes),
# conf.view(conf.size(0), -1, 1), ## sigmoid prediction
self.priors
)
return output
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
if ext == '.pkl' or '.pth':
print('Loading weights into state dict...')
self.load_state_dict(torch.load(base_file,
map_location='cuda:0'))
print('Finished!')
else:
print('Sorry only .pth and .pkl files supported.')
def conv_dw(inp, stride):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp,bias=False),
nn.BatchNorm2d(inp),
nn.ReLU6(inplace=True),
)
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1,bias=False),
nn.BatchNorm2d(oup),
# nn.ReLU6(inplace=True)
nn.ReLU(inplace=True)
)
def conv1_bn(inp, oup ,stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0,bias=False),
nn.BatchNorm2d(oup),
# nn.ReLU6(inplace=True),
nn.ReLU(inplace=True),
)
class PyramidFeatures(nn.Module):
# def __init__(self, C3_size, C4_size, C5_size, feature_size=128):
def __init__(self, C4_size, C5_size, feature_size=128):
super(PyramidFeatures, self).__init__()
# upsample C5 to get P5 from the FPN paper
self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
# self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_upsampled = nn.ConvTranspose2d(feature_size, feature_size, kernel_size=3, stride=2, padding=1)
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# add P5 elementwise to C4
self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P4_upsampled = nn.ConvTranspose2d(feature_size, feature_size, kernel_size=2, stride=2)
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# # add P4 elementwise to C3
# self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
# self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
def forward(self, inputs):
# C3, C4, C5 = inputs
C4, C5 = inputs
# print('C4:', type(C4), C4.size()) # torch.Size([1, 128, 19, 19])
# print('C5:', type(C5), C5.size()) # ([1, 320, 10, 10])
P5_x = self.P5_1(C5)
# print('P5_x:', P5_x.size())
P5_upsampled_x = self.P5_upsampled(P5_x)
P5_x = self.P5_2(P5_x)
P4_x = self.P4_1(C4)
# print('P4_x:', P4_x.size())
P4_x = P5_upsampled_x + P4_x
# P4_upsampled_x = self.P4_upsampled(P4_x)
P4_x = self.P4_2(P4_x)
# print('P4_x:', P4_x.size())
# P3_x = self.P3_1(C3)
# P3_x = P3_x + P4_upsampled_x
# P3_x = self.P3_2(P3_x)
# return [P3_x, P4_x, P5_x]
return [P4_x, P5_x]
def add_extras(i): ## 在此处加入fpn
# Extra layers added to VGG for feature scaling
layers = []
# tensor_layers = []
#conv14
layers += [conv1_bn(i,256,1)]
layers += [conv_bn(256,512,2)]
#conv15
layers += [conv1_bn(512,128,1)]
layers += [conv_bn(128,256,2)]
#con16
layers += [conv1_bn(256,128,1)]
layers += [conv_bn(128,256,2)]
#conv17
layers += [conv1_bn(256,64,1)]
layers += [conv_bn(64,128,2)]
# print('layers:', len(layers), type(layers))
return layers
def multibox(mobilenet, extra_layers, cfg, num_classes):
loc_layers = []
conf_layers = []
### may be have bug ###
#mobilenetv2_source = [5, -1]
extras_source = [1,3,5,7]
# loc_layers += [nn.Conv2d(96, 4 * 4, kernel_size=1)]
# conf_layers += [nn.Conv2d(96, 4 * num_classes, kernel_size=1)]
loc_layers += [nn.Conv2d(128, 4 * 4, kernel_size=1)]
conf_layers += [nn.Conv2d(128, 4 * num_classes, kernel_size=1)]
# loc_layers += [nn.Conv2d(1280, 6 * 4, kernel_size=1)]
# conf_layers += [nn.Conv2d(1280, 6 * num_classes, kernel_size=1)]
loc_layers += [nn.Conv2d(128, 6 * 4, kernel_size=1)]
conf_layers += [nn.Conv2d(128, 6 * num_classes, kernel_size=1)]
# for k, v in enumerate(extra_layers[1::2], 2):
for k, v in enumerate(extras_source):
k += 2
loc_layers += [nn.Conv2d(extra_layers[v][0].out_channels,
cfg[k] * 4, kernel_size=1)]
conf_layers += [nn.Conv2d(extra_layers[v][0].out_channels,
cfg[k] * num_classes, kernel_size=1)]
return mobilenet, extra_layers, (loc_layers, conf_layers)
extras = {
'300': [256, 'S', 512, 128, 'S', 256, 128, 256],
'512': [],
}
mbox = {
'300':[4, 6, 6, 6, 6, 6],
'512': [],
}
def build_ssd(phase, size=300, num_classes=2):
# add, no use
size = 300
if phase != "test" and phase != "train":
print("ERROR: Phase: " + phase + " not recognized")
return
if size != 300:
print("ERROR: You specified size " + repr(size) + ". However, " +
"currently only SSD300 (size=300) is supported!")
return
# base_, extras_, head_ = multibox(mobilenetv2.MobileNet2(scale=1.0), add_extras(1280),mbox[str(size)], num_classes)
base_, extras_, head_ = multibox(mobilenetv2.MobileNet2(scale=1.0), add_extras(128),mbox[str(size)], num_classes)
return SSD(phase, size, base_, extras_, head_, num_classes)
if __name__ =="__main__":
torch.backends.cudnn.enabled = False
ssd = build_ssd("train")
x = torch.zeros((32, 96, 19, 19))
x = ssd.loc[0](x)
print(x.size())
x = torch.zeros((32, 1280, 10, 10))
x = ssd.loc[1](x)
print(x.size())
x = torch.zeros((32, 512, 5, 5))
x = ssd.loc[2](x)
print(x.size())
x = torch.zeros((32, 256, 3, 3))
x = ssd.loc[3](x)
print(x.size())
x = torch.zeros((32, 256, 2, 2))
x = ssd.loc[4](x)
print(x.size())
x = torch.zeros((32, 128, 1, 1))
x = ssd.loc[5](x)
print(x.size())