-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathyolov5_cls_trt.py
248 lines (218 loc) · 8.69 KB
/
yolov5_cls_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
An example that uses TensorRT's Python api to make inferences.
"""
import os
import shutil
import sys
import threading
import time
import cv2
import numpy as np
import torch
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
def get_img_path_batches(batch_size, img_dir):
ret = []
batch = []
for root, dirs, files in os.walk(img_dir):
for name in files:
if len(batch) == batch_size:
ret.append(batch)
batch = []
batch.append(os.path.join(root, name))
if len(batch) > 0:
ret.append(batch)
return ret
with open("imagenet_classes.txt") as f:
classes = [line.strip() for line in f.readlines()]
class YoLov5TRT(object):
"""
description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
"""
def __init__(self, engine_file_path):
# Create a Context on this device,
self.ctx = cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)
# Deserialize the engine from file
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
self.mean = (0.485, 0.456, 0.406)
self.std = (0.229, 0.224, 0.225)
for binding in engine:
print('binding:', binding, engine.get_binding_shape(binding))
size = trt.volume(engine.get_binding_shape(
binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
self.input_w = engine.get_binding_shape(binding)[-1]
self.input_h = engine.get_binding_shape(binding)[-2]
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
self.batch_size = engine.max_batch_size
def infer(self, raw_image_generator):
threading.Thread.__init__(self)
# Make self the active context, pushing it on top of the context stack.
self.ctx.push()
# Restore
stream = self.stream
context = self.context
engine = self.engine
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# Do image preprocess
batch_image_raw = []
batch_input_image = np.empty(
shape=[self.batch_size, 3, self.input_h, self.input_w])
for i, image_raw in enumerate(raw_image_generator):
batch_image_raw.append(image_raw)
input_image = self.preprocess_cls_image(image_raw)
np.copyto(batch_input_image[i], input_image)
batch_input_image = np.ascontiguousarray(batch_input_image)
# Copy input image to host buffer
np.copyto(host_inputs[0], batch_input_image.ravel())
start = time.time()
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# Run inference.
context.execute_async(batch_size=self.batch_size,
bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
# Synchronize the stream
stream.synchronize()
end = time.time()
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()
# Here we use the first row of output in that batch_size = 1
output = host_outputs[0]
# Do postprocess
for i in range(self.batch_size):
classes_ls, predicted_conf_ls, category_id_ls = self.postprocess_cls(
output)
cv2.putText(batch_image_raw[i], str(
classes_ls), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1, cv2.LINE_AA)
print(classes_ls, predicted_conf_ls)
return batch_image_raw, end - start
def destroy(self):
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()
def get_raw_image(self, image_path_batch):
"""
description: Read an image from image path
"""
for img_path in image_path_batch:
yield cv2.imread(img_path)
def get_raw_image_zeros(self, image_path_batch=None):
"""
description: Ready data for warmup
"""
for _ in range(self.batch_size):
yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8)
def preprocess_cls_image(self, input_img):
im = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
im = cv2.resize(im, (self.input_h, self.input_w))
im = np.float32(im)
im /= 255.0
im -= self.mean
im /= self.std
im = im.transpose(2, 0, 1)
# prepare batch
batch_data = np.expand_dims(im, axis=0)
return batch_data
def postprocess_cls(self, output_data):
classes_ls = []
predicted_conf_ls = []
category_id_ls = []
output_data = output_data.reshape(self.batch_size, -1)
output_data = torch.Tensor(output_data)
p = torch.nn.functional.softmax(output_data, dim=1)
score, index = torch.topk(p, 3)
for ind in range(index.shape[0]):
input_category_id = index[ind][0].item() # 716
category_id_ls.append(input_category_id)
predicted_confidence = score[ind][0].item()
predicted_conf_ls.append(predicted_confidence)
classes_ls.append(classes[input_category_id])
return classes_ls, predicted_conf_ls, category_id_ls
class inferThread(threading.Thread):
def __init__(self, yolov5_wrapper, image_path_batch):
threading.Thread.__init__(self)
self.yolov5_wrapper = yolov5_wrapper
self.image_path_batch = image_path_batch
def run(self):
batch_image_raw, use_time = self.yolov5_wrapper.infer(
self.yolov5_wrapper.get_raw_image(self.image_path_batch))
for i, img_path in enumerate(self.image_path_batch):
parent, filename = os.path.split(img_path)
save_name = os.path.join('output', filename)
# Save image
cv2.imwrite(save_name, batch_image_raw[i])
print('input->{}, time->{:.2f}ms, saving into output/'.format(
self.image_path_batch, use_time * 1000))
class warmUpThread(threading.Thread):
def __init__(self, yolov5_wrapper):
threading.Thread.__init__(self)
self.yolov5_wrapper = yolov5_wrapper
def run(self):
batch_image_raw, use_time = self.yolov5_wrapper.infer(
self.yolov5_wrapper.get_raw_image_zeros())
print(
'warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000))
if __name__ == "__main__":
# load custom plugin and engine
engine_file_path = "build/yolov5s-cls.engine"
if len(sys.argv) > 1:
engine_file_path = sys.argv[1]
if os.path.exists('output/'):
shutil.rmtree('output/')
os.makedirs('output/')
# a YoLov5TRT instance
yolov5_wrapper = YoLov5TRT(engine_file_path)
try:
print('batch size is', yolov5_wrapper.batch_size)
image_dir = "images/"
image_path_batches = get_img_path_batches(
yolov5_wrapper.batch_size, image_dir)
for i in range(10):
# create a new thread to do warm_up
thread1 = warmUpThread(yolov5_wrapper)
thread1.start()
thread1.join()
for batch in image_path_batches:
# create a new thread to do inference
thread1 = inferThread(yolov5_wrapper, batch)
thread1.start()
thread1.join()
finally:
# destroy the instance
yolov5_wrapper.destroy()