-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathtsm_r50.py
504 lines (421 loc) · 18.8 KB
/
tsm_r50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import argparse
import os
import struct
import numpy as np
import pycuda.autoinit # noqa
import pycuda.driver as cuda
import tensorrt as trt
BATCH_SIZE = 1
NUM_SEGMENTS = 8
INPUT_H = 224
INPUT_W = 224
OUTPUT_SIZE = 400
SHIFT_DIV = 8
assert INPUT_H % 32 == 0 and INPUT_W % 32 == 0, \
"Input height and width should be a multiple of 32."
EPS = 1e-5
INPUT_BLOB_NAME = "data"
OUTPUT_BLOB_NAME = "prob"
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
def load_weights(file):
print(f"Loading weights: {file}")
assert os.path.exists(file), f'Unable to load weight file {file}'
weight_map = {}
with open(file, "r") as f:
lines = [line.strip() for line in f]
count = int(lines[0])
assert count == len(lines) - 1
for i in range(1, count + 1):
splits = lines[i].split(" ")
name = splits[0]
cur_count = int(splits[1])
assert cur_count + 2 == len(splits)
values = []
for j in range(2, len(splits)):
# hex string to bytes to float
values.append(struct.unpack(">f", bytes.fromhex(splits[j])))
weight_map[name] = np.array(values, dtype=np.float32)
return weight_map
def add_shift_module(network, input, input_shape, num_segments=8, shift_div=8):
fold = input_shape[1] // shift_div
# left
left_split = network.add_slice(input,
start=(1, 0, 0, 0),
shape=(num_segments - 1, fold,
input_shape[2], input_shape[3]),
stride=(1, 1, 1, 1))
assert left_split
left_split_shape = (1, fold, input_shape[2], input_shape[3])
left_blank = network.add_constant(shape=left_split_shape,
weights=np.zeros(left_split_shape,
np.float32))
assert left_blank
left = network.add_concatenation(
[left_split.get_output(0),
left_blank.get_output(0)])
assert left
left.axis = 0
# mid
mid_split_shape = (1, fold, input_shape[2], input_shape[3])
mid_blank = network.add_constant(shape=mid_split_shape,
weights=np.zeros(mid_split_shape,
np.float32))
assert mid_blank
mid_split = network.add_slice(input,
start=(0, fold, 0, 0),
shape=(num_segments - 1, fold,
input_shape[2], input_shape[3]),
stride=(1, 1, 1, 1))
assert mid_split
mid = network.add_concatenation(
[mid_blank.get_output(0),
mid_split.get_output(0)])
assert mid
mid.axis = 0
# right
right = network.add_slice(input,
start=(0, 2 * fold, 0, 0),
shape=(num_segments, input_shape[1] - 2 * fold,
input_shape[2], input_shape[3]),
stride=(1, 1, 1, 1))
# concat left mid right
output = network.add_concatenation(
[left.get_output(0),
mid.get_output(0),
right.get_output(0)])
assert output
output.axis = 1
return output
def add_batch_norm_2d(network, weight_map, input, layer_name, eps):
gamma = weight_map[layer_name + ".weight"]
beta = weight_map[layer_name + ".bias"]
mean = weight_map[layer_name + ".running_mean"]
var = weight_map[layer_name + ".running_var"]
var = np.sqrt(var + eps)
scale = gamma / var
shift = -mean / var * gamma + beta
return network.add_scale(input=input,
mode=trt.ScaleMode.CHANNEL,
shift=shift,
scale=scale)
def bottleneck(network, weight_map, input, in_channels, out_channels, stride,
layer_name, input_shape):
shift = add_shift_module(network, input, input_shape, NUM_SEGMENTS,
SHIFT_DIV)
assert shift
conv1 = network.add_convolution(input=shift.get_output(0),
num_output_maps=out_channels,
kernel_shape=(1, 1),
kernel=weight_map[layer_name +
"conv1.weight"],
bias=trt.Weights())
assert conv1
bn1 = add_batch_norm_2d(network, weight_map, conv1.get_output(0),
layer_name + "bn1", EPS)
assert bn1
relu1 = network.add_activation(bn1.get_output(0),
type=trt.ActivationType.RELU)
assert relu1
conv2 = network.add_convolution(input=relu1.get_output(0),
num_output_maps=out_channels,
kernel_shape=(3, 3),
kernel=weight_map[layer_name +
"conv2.weight"],
bias=trt.Weights())
assert conv2
conv2.stride = (stride, stride)
conv2.padding = (1, 1)
bn2 = add_batch_norm_2d(network, weight_map, conv2.get_output(0),
layer_name + "bn2", EPS)
assert bn2
relu2 = network.add_activation(bn2.get_output(0),
type=trt.ActivationType.RELU)
assert relu2
conv3 = network.add_convolution(input=relu2.get_output(0),
num_output_maps=out_channels * 4,
kernel_shape=(1, 1),
kernel=weight_map[layer_name +
"conv3.weight"],
bias=trt.Weights())
assert conv3
bn3 = add_batch_norm_2d(network, weight_map, conv3.get_output(0),
layer_name + "bn3", EPS)
assert bn3
if stride != 1 or in_channels != 4 * out_channels:
conv4 = network.add_convolution(
input=input,
num_output_maps=out_channels * 4,
kernel_shape=(1, 1),
kernel=weight_map[layer_name + "downsample.0.weight"],
bias=trt.Weights())
assert conv4
conv4.stride = (stride, stride)
bn4 = add_batch_norm_2d(network, weight_map, conv4.get_output(0),
layer_name + "downsample.1", EPS)
assert bn4
ew1 = network.add_elementwise(bn4.get_output(0), bn3.get_output(0),
trt.ElementWiseOperation.SUM)
else:
ew1 = network.add_elementwise(input, bn3.get_output(0),
trt.ElementWiseOperation.SUM)
assert ew1
relu3 = network.add_activation(ew1.get_output(0),
type=trt.ActivationType.RELU)
assert relu3
return relu3
def create_engine(maxBatchSize, builder, dt, weights):
weight_map = load_weights(weights)
network = builder.create_network()
data = network.add_input(INPUT_BLOB_NAME, dt,
(NUM_SEGMENTS, 3, INPUT_H, INPUT_W))
assert data
conv1 = network.add_convolution(input=data,
num_output_maps=64,
kernel_shape=(7, 7),
kernel=weight_map["conv1.weight"],
bias=trt.Weights())
assert conv1
conv1.stride = (2, 2)
conv1.padding = (3, 3)
bn1 = add_batch_norm_2d(network, weight_map, conv1.get_output(0), "bn1",
EPS)
assert bn1
relu1 = network.add_activation(bn1.get_output(0),
type=trt.ActivationType.RELU)
assert relu1
pool1 = network.add_pooling(input=relu1.get_output(0),
window_size=trt.DimsHW(3, 3),
type=trt.PoolingType.MAX)
assert pool1
pool1.stride = (2, 2)
pool1.padding = (1, 1)
cur_height = INPUT_H // 4
cur_width = INPUT_W // 4
x = bottleneck(network, weight_map, pool1.get_output(0), 64, 64, 1,
"layer1.0.", (NUM_SEGMENTS, 64, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 256, 64, 1,
"layer1.1.", (NUM_SEGMENTS, 256, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 256, 64, 1,
"layer1.2.", (NUM_SEGMENTS, 256, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 256, 128, 2,
"layer2.0.", (NUM_SEGMENTS, 256, cur_height, cur_width))
cur_height = INPUT_H // 8
cur_width = INPUT_W // 8
x = bottleneck(network, weight_map, x.get_output(0), 512, 128, 1,
"layer2.1.", (NUM_SEGMENTS, 512, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 512, 128, 1,
"layer2.2.", (NUM_SEGMENTS, 512, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 512, 128, 1,
"layer2.3.", (NUM_SEGMENTS, 512, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 512, 256, 2,
"layer3.0.", (NUM_SEGMENTS, 512, cur_height, cur_width))
cur_height = INPUT_H // 16
cur_width = INPUT_W // 16
x = bottleneck(network, weight_map, x.get_output(0), 1024, 256, 1,
"layer3.1.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 1024, 256, 1,
"layer3.2.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 1024, 256, 1,
"layer3.3.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 1024, 256, 1,
"layer3.4.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 1024, 256, 1,
"layer3.5.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 1024, 512, 2,
"layer4.0.", (NUM_SEGMENTS, 1024, cur_height, cur_width))
cur_height = INPUT_H // 32
cur_width = INPUT_W // 32
x = bottleneck(network, weight_map, x.get_output(0), 2048, 512, 1,
"layer4.1.", (NUM_SEGMENTS, 2048, cur_height, cur_width))
x = bottleneck(network, weight_map, x.get_output(0), 2048, 512, 1,
"layer4.2.", (NUM_SEGMENTS, 2048, cur_height, cur_width))
pool2 = network.add_pooling(x.get_output(0),
window_size=trt.DimsHW(cur_height, cur_width),
type=trt.PoolingType.AVERAGE)
assert pool2
pool2.stride = (1, 1)
fc1 = network.add_fully_connected(input=pool2.get_output(0),
num_outputs=OUTPUT_SIZE,
kernel=weight_map['fc.weight'],
bias=weight_map['fc.bias'])
assert fc1
reshape = network.add_shuffle(fc1.get_output(0))
assert reshape
reshape.reshape_dims = (NUM_SEGMENTS, OUTPUT_SIZE)
reduce = network.add_reduce(reshape.get_output(0),
op=trt.ReduceOperation.AVG,
axes=1,
keep_dims=False)
assert reduce
softmax = network.add_softmax(reduce.get_output(0))
assert softmax
softmax.axes = 1
softmax.get_output(0).name = OUTPUT_BLOB_NAME
network.mark_output(softmax.get_output(0))
# Build engine
builder.max_batch_size = maxBatchSize
builder.max_workspace_size = 1 << 20
engine = builder.build_cuda_engine(network)
del network
del weight_map
return engine
def do_inference(context, host_in, host_out, batchSize):
devide_in = cuda.mem_alloc(host_in.nbytes)
devide_out = cuda.mem_alloc(host_out.nbytes)
bindings = [int(devide_in), int(devide_out)]
stream = cuda.Stream()
cuda.memcpy_htod_async(devide_in, host_in, stream)
context.execute_async(batch_size=batchSize,
bindings=bindings,
stream_handle=stream.handle)
cuda.memcpy_dtoh_async(host_out, devide_out, stream)
stream.synchronize()
def inference_mmaction2(inputs, config, checkpoint):
import torch
from mmaction.models import build_model
from mmcv import Config
from mmcv.runner import load_checkpoint
cfg = Config.fromfile(config)
cfg.model.backbone.pretrained = None
model = build_model(cfg.model,
train_cfg=None,
test_cfg=cfg.get('test_cfg'))
load_checkpoint(model, checkpoint, map_location='cpu')
model.eval()
inputs = torch.tensor(inputs)
with torch.no_grad():
return model(return_loss=False, imgs=inputs)
def main(args):
assert not (args.save_engine_path and args.load_engine_path)
if args.load_engine_path:
# load from local file
runtime = trt.Runtime(TRT_LOGGER)
assert runtime
with open(args.load_engine_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
else:
# Create network and engine
assert args.tensorrt_weights
builder = trt.Builder(TRT_LOGGER)
engine = create_engine(BATCH_SIZE, builder, trt.float32,
args.tensorrt_weights)
assert engine
assert engine.num_bindings == 2
if args.save_engine_path is not None:
# save engine to local file
with open(args.save_engine_path, "wb") as f:
f.write(engine.serialize())
print(f"{args.save_engine_path} Generated successfully.")
context = engine.create_execution_context()
assert context
host_in = cuda.pagelocked_empty(BATCH_SIZE * NUM_SEGMENTS * 3 * INPUT_H *
INPUT_W,
dtype=np.float32)
host_out = cuda.pagelocked_empty(BATCH_SIZE * OUTPUT_SIZE,
dtype=np.float32)
if args.test_mmaction2:
assert args.mmaction2_config and args.mmaction2_checkpoint, \
"MMAction2 config and checkpoint couldn't be None"
data = np.random.randn(BATCH_SIZE, NUM_SEGMENTS, 3, INPUT_H,
INPUT_W).astype(np.float32)
# TensorRT inference
np.copyto(host_in, data.ravel())
do_inference(context, host_in, host_out, BATCH_SIZE)
# pytorch inference
pytorch_results = inference_mmaction2(data, args.mmaction2_config,
args.mmaction2_checkpoint)
# test
from numpy.testing import assert_array_almost_equal
assert_array_almost_equal(host_out.reshape(-1),
pytorch_results.reshape(-1),
decimal=4)
print("MMAction2 TEST PASSED")
if args.test_cpp:
assert args.cpp_result_path, "Should set --cpp-result-path"
assert os.path.exists(args.cpp_result_path),\
f"{args.cpp_result} doesn't exist"
# C++ API fixed inputs
inputs = np.ones((BATCH_SIZE, NUM_SEGMENTS, 3, INPUT_H, INPUT_W),
dtype=np.float32)
# TensorRT inference
np.copyto(host_in, inputs.ravel())
do_inference(context, host_in, host_out, BATCH_SIZE)
# Read cpp inference results
with open(args.cpp_result_path, "r") as f:
data = f.read().strip()
cpp_results = np.array([float(d)
for d in data.split(" ")]).astype(np.float32)
# test
from numpy.testing import assert_array_almost_equal
assert_array_almost_equal(host_out.reshape(-1),
cpp_results.reshape(-1),
decimal=4)
print("CPP TEST PASSED")
if args.input_video:
# Get ONE prediction result from ONE video
# Use demo.mp4 from MMAction2
import cv2
# get selected frame id of uniform sampling
cap = cv2.VideoCapture(args.input_video)
sample_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
avg_interval = sample_length / float(NUM_SEGMENTS)
base_offsets = np.arange(NUM_SEGMENTS) * avg_interval
clip_offsets = (base_offsets + avg_interval / 2.0).astype(np.int32)
# read frames
frames = []
for i in range(max(clip_offsets) + 1):
flag, frame = cap.read()
if i in clip_offsets:
frames.append(cv2.resize(frame, (INPUT_W, INPUT_W)))
frames = np.array(frames)
# preprocessing frames
mean = np.array([123.675, 116.28, 103.53])
std = np.array([58.395, 57.12, 57.375])
frames = (frames - mean) / std
frames = frames.transpose([0, 3, 1, 2])
# TensorRT inference
np.copyto(host_in, frames.ravel())
do_inference(context, host_in, host_out, BATCH_SIZE)
# For demo.mp4, should be 6, aka arm wrestling
class_id = np.argmax(host_out.reshape(-1))
print(
f'Result class id {class_id}, socre {round(host_out[class_id]):.2f}'
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--tensorrt-weights",
type=str,
default=None,
help="Path to TensorRT weights, which is generated by gen_weights.py")
parser.add_argument("--input-video",
type=str,
default=None,
help="Path to local video file")
parser.add_argument("--save-engine-path",
type=str,
default=None,
help="Save engine to local file")
parser.add_argument("--load-engine-path",
type=str,
default=None,
help="Saved engine file path")
parser.add_argument("--test-mmaction2",
action='store_true',
help="Compare TensorRT results with MMAction2 Results")
parser.add_argument("--mmaction2-config",
type=str,
default=None,
help="Path to MMAction2 config file")
parser.add_argument("--mmaction2-checkpoint",
type=str,
default=None,
help="Path to MMAction2 checkpoint url or file path")
parser.add_argument("--test-cpp",
action='store_true',
help="Compare Python API results with C++ API results")
parser.add_argument("--cpp-result-path",
type=str,
default='./build/result.txt',
help="Path to C++ API results")
main(parser.parse_args())