-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathMaskRcnnInferencePlugin.h
executable file
·162 lines (149 loc) · 6.01 KB
/
MaskRcnnInferencePlugin.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#pragma once
#include <NvInfer.h>
#include <vector>
#include <cassert>
#include "macros.h"
using namespace nvinfer1;
#define PLUGIN_NAME "MaskRcnnInference"
#define PLUGIN_VERSION "1"
#define PLUGIN_NAMESPACE ""
namespace nvinfer1 {
int maskRcnnInference(int batchSize,
const void *const *inputs, void *TRT_CONST_ENQUEUE*outputs,
int detections_per_im, int output_size, int num_classes, cudaStream_t stream);
/*
input1: indices{C, 1} C->topk
input2: masks{C, NUM_CLASS, size, size} C->topk format:XYXY
output1: masks{C, 1, size, size} C->detections_per_img
Description: implement index select
*/
class MaskRcnnInferencePlugin : public IPluginV2Ext {
int _detections_per_im;
int _output_size;
int _num_classes = 1;
protected:
void deserialize(void const* data, size_t length) {
const char* d = static_cast<const char*>(data);
read(d, _detections_per_im);
read(d, _output_size);
read(d, _num_classes);
}
size_t getSerializationSize() const TRT_NOEXCEPT override {
return sizeof(_detections_per_im) + sizeof(_output_size) + sizeof(_num_classes);
}
void serialize(void *buffer) const TRT_NOEXCEPT override {
char* d = static_cast<char*>(buffer);
write(d, _detections_per_im);
write(d, _output_size);
write(d, _num_classes);
}
public:
MaskRcnnInferencePlugin(int detections_per_im, int output_size)
: _detections_per_im(detections_per_im), _output_size(output_size) {
assert(detections_per_im > 0);
assert(output_size > 0);
}
MaskRcnnInferencePlugin(int detections_per_im, int output_size, int num_classes)
: _detections_per_im(detections_per_im), _output_size(output_size), _num_classes(num_classes) {
assert(detections_per_im > 0);
assert(output_size > 0);
assert(num_classes > 0);
}
MaskRcnnInferencePlugin(void const* data, size_t length) {
this->deserialize(data, length);
}
const char *getPluginType() const TRT_NOEXCEPT override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const TRT_NOEXCEPT override {
return PLUGIN_VERSION;
}
int getNbOutputs() const TRT_NOEXCEPT override {
return 1;
}
Dims getOutputDimensions(int index,
const Dims *inputs, int nbInputDims) TRT_NOEXCEPT override {
assert(index < this->getNbOutputs());
return Dims4(_detections_per_im, 1, _output_size, _output_size);
}
bool supportsFormat(DataType type, PluginFormat format) const TRT_NOEXCEPT override {
return type == DataType::kFLOAT && format == PluginFormat::kLINEAR;
}
int initialize() TRT_NOEXCEPT override { return 0; }
void terminate() TRT_NOEXCEPT override {}
size_t getWorkspaceSize(int maxBatchSize) const TRT_NOEXCEPT override {
return 0;
}
int enqueue(int batchSize,
const void *const *inputs, void *TRT_CONST_ENQUEUE*outputs,
void *workspace, cudaStream_t stream) TRT_NOEXCEPT override {
return maskRcnnInference(batchSize, inputs, outputs,
_detections_per_im, _output_size, _num_classes, stream);
}
void destroy() TRT_NOEXCEPT override {
delete this;
}
const char *getPluginNamespace() const TRT_NOEXCEPT override {
return PLUGIN_NAMESPACE;
}
void setPluginNamespace(const char *N) TRT_NOEXCEPT override {
}
// IPluginV2Ext Methods
DataType getOutputDataType(int index, const DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT override {
assert(index < 1);
return DataType::kFLOAT;
}
bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted,
int nbInputs) const TRT_NOEXCEPT override {
return false;
}
bool canBroadcastInputAcrossBatch(int inputIndex) const TRT_NOEXCEPT override { return false; }
void configurePlugin(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs,
const DataType* inputTypes, const DataType* outputTypes, const bool* inputIsBroadcast,
const bool* outputIsBroadcast, PluginFormat floatFormat, int maxBatchSize) TRT_NOEXCEPT override {
assert(*inputTypes == nvinfer1::DataType::kFLOAT &&
floatFormat == nvinfer1::PluginFormat::kLINEAR);
assert(nbInputs == 2);
assert(inputDims[0].d[0] == _detections_per_im);
assert(inputDims[1].d[0] == _detections_per_im);
assert(inputDims[1].d[2] == _output_size);
assert(inputDims[1].d[3] == _output_size);
_num_classes = inputDims[1].d[1];
}
IPluginV2Ext *clone() const TRT_NOEXCEPT override {
return new MaskRcnnInferencePlugin(_detections_per_im, _output_size, _num_classes);
}
private:
template<typename T> void write(char*& buffer, const T& val) const {
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template<typename T> void read(const char*& buffer, T& val) {
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
};
class MaskRcnnInferencePluginCreator : public IPluginCreator {
public:
MaskRcnnInferencePluginCreator() {}
const char *getPluginNamespace() const TRT_NOEXCEPT override {
return PLUGIN_NAMESPACE;
}
const char *getPluginName() const TRT_NOEXCEPT override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const TRT_NOEXCEPT override {
return PLUGIN_VERSION;
}
IPluginV2 *deserializePlugin(const char *name, const void *serialData, size_t serialLength) TRT_NOEXCEPT override {
return new MaskRcnnInferencePlugin(serialData, serialLength);
}
void setPluginNamespace(const char *N) TRT_NOEXCEPT override {}
const PluginFieldCollection *getFieldNames() TRT_NOEXCEPT override { return nullptr; }
IPluginV2 *createPlugin(const char *name, const PluginFieldCollection *fc) TRT_NOEXCEPT override { return nullptr; }
};
REGISTER_TENSORRT_PLUGIN(MaskRcnnInferencePluginCreator);
} // namespace nvinfer1
#undef PLUGIN_NAME
#undef PLUGIN_VERSION
#undef PLUGIN_NAMESPACE