-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathgenwts.py
42 lines (37 loc) · 1.35 KB
/
genwts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from torch.autograd import Variable
from LPRNet.model import LPRNET
import struct
model_path = './weights/Final_LPRNet_model.pth'
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
'新',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-'
]
model = LPRNET.LPRNet(class_num=len(CHARS), dropout_rate=0)
if torch.cuda.is_available():
model = model.cuda()
print('loading pretrained model from %s' % model_path)
model.load_state_dict(torch.load(model_path))
image = torch.ones(1, 3, 24, 94)
if torch.cuda.is_available():
image = image.cuda()
model.eval()
print(model)
print('image shape ', image.shape)
preds = model(image)
f = open("LPRNet.wts", 'w')
f.write("{}\n".format(len(model.state_dict().keys())))
for k, v in model.state_dict().items():
print('key: ', k)
print('value: ', v.shape)
vr = v.reshape(-1).cpu().numpy()
f.write("{} {}".format(k, len(vr)))
for vv in vr:
f.write(" ")
f.write(struct.pack(">f", float(vv)).hex())
f.write("\n")