-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathdensenet121.py
293 lines (224 loc) · 9.96 KB
/
densenet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import sys
import struct
import argparse
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
BATCH_SIZE = 1
INPUT_H = 224
INPUT_W = 224
OUTPUT_SIZE = 1000
INPUT_BLOB_NAME = "data"
OUTPUT_BLOB_NAME = "prob"
EPS = 1e-5
WEIGHT_PATH = "./densenet121.wts"
ENGINE_PATH = "./densenet121.engine"
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
def load_weights(file):
print(f"Loading weights: {file}")
assert os.path.exists(file), 'Unable to load weight file.'
weight_map = {}
with open(file, "r") as f:
lines = [line.strip() for line in f]
count = int(lines[0])
assert count == len(lines) - 1
for i in range(1, count + 1):
splits = lines[i].split(" ")
name = splits[0]
cur_count = int(splits[1])
assert cur_count + 2 == len(splits)
values = []
for j in range(2, len(splits)):
# hex string to bytes to float
values.append(struct.unpack(">f", bytes.fromhex(splits[j])))
weight_map[name] = np.array(values, dtype=np.float32)
return weight_map
def add_batch_norm_2d(network, weight_map, input, layer_name):
gamma = weight_map[layer_name + ".weight"]
beta = weight_map[layer_name + ".bias"]
mean = weight_map[layer_name + ".running_mean"]
var = weight_map[layer_name + ".running_var"]
var = np.sqrt(var + EPS)
scale = gamma / var
shift = -mean / var * gamma + beta
return network.add_scale(input=input,
mode=trt.ScaleMode.CHANNEL,
shift=shift,
scale=scale)
def add_dense_layer(network, input, weight_map, lname):
bn1 = add_batch_norm_2d(network, weight_map, input, lname + ".norm1")
relu1 = network.add_activation(bn1.get_output(0), type=trt.ActivationType.RELU)
assert relu1
conv1 = network.add_convolution(input=relu1.get_output(0),
num_output_maps=128,
kernel_shape=(1, 1),
kernel=weight_map[lname + ".conv1.weight"],
bias=trt.Weights())
assert conv1
conv1.stride = (1, 1)
bn2 = add_batch_norm_2d(network, weight_map, conv1.get_output(0), lname + ".norm2")
relu2 = network.add_activation(bn2.get_output(0), type=trt.ActivationType.RELU)
assert relu2
conv2 = network.add_convolution(input=relu2.get_output(0),
num_output_maps=32,
kernel_shape=(3, 3),
kernel=weight_map[lname + ".conv2.weight"],
bias=trt.Weights())
assert conv2
conv2.stride = (1, 1)
conv2.padding = (1, 1)
return conv2
def add_transition(network, input, weight_map, outch, lname):
bn1 = add_batch_norm_2d(network, weight_map, input, lname + ".norm")
relu1 = network.add_activation(bn1.get_output(0), type=trt.ActivationType.RELU)
assert relu1
conv1 = network.add_convolution(input=relu1.get_output(0),
num_output_maps=outch,
kernel_shape=(1, 1),
kernel=weight_map[lname + ".conv.weight"],
bias=trt.Weights())
assert conv1
conv1.stride = (1, 1)
pool1 = network.add_pooling(input=conv1.get_output(0),
type=trt.PoolingType.AVERAGE,
window_size=trt.DimsHW(2, 2))
assert pool1
pool1.stride_nd = (2, 2)
pool1.padding_nd = (0, 0)
return pool1
def add_dense_block(network, input, weight_map, num_dense_layers, lname):
input_tensors = [None for _ in range(num_dense_layers+1)]
input_tensors[0] = input
c = add_dense_layer(network, input, weight_map, lname + ".denselayer" + str(1))
for i in range(1, num_dense_layers):
input_tensors[i] = c.get_output(0)
concat = network.add_concatenation(input_tensors[:i+1])
assert concat
c = add_dense_layer(network, concat.get_output(0), weight_map, lname + ".denselayer" + str(i+1))
input_tensors[num_dense_layers] = c.get_output(0)
concat = network.add_concatenation(input_tensors)
assert concat
return concat
def create_engine(max_batch_size, builder, config, dt):
weight_map = load_weights(WEIGHT_PATH)
network = builder.create_network()
data = network.add_input(INPUT_BLOB_NAME, dt, (3, INPUT_H, INPUT_W))
assert data
conv0 = network.add_convolution(input=data,
num_output_maps=64,
kernel_shape=(7, 7),
kernel=weight_map["features.conv0.weight"],
bias=trt.Weights())
assert conv0
conv0.stride = (2, 2)
conv0.padding = (3, 3)
bn0 = add_batch_norm_2d(network, weight_map, conv0.get_output(0), "features.norm0")
relu0 = network.add_activation(bn0.get_output(0), type=trt.ActivationType.RELU)
assert relu0
pool0 = network.add_pooling(input=relu0.get_output(0),
type=trt.PoolingType.MAX,
window_size=trt.DimsHW(3, 3))
assert pool0
pool0.stride_nd = (2, 2)
pool0.padding_nd = (1, 1)
dense1 = add_dense_block(network, pool0.get_output(0), weight_map, 6, "features.denseblock1")
transition1 = add_transition(network, dense1.get_output(0), weight_map, 128, "features.transition1")
dense2 = add_dense_block(network, transition1.get_output(0), weight_map, 12, "features.denseblock2")
transition2 = add_transition(network, dense2.get_output(0), weight_map, 256, "features.transition2")
dense3 = add_dense_block(network, transition2.get_output(0), weight_map, 24, "features.denseblock3")
transition3 = add_transition(network, dense3.get_output(0), weight_map, 512, "features.transition3")
dense4 = add_dense_block(network, transition3.get_output(0), weight_map, 16, "features.denseblock4")
bn5 = add_batch_norm_2d(network, weight_map, dense4.get_output(0), "features.norm5")
relu5 = network.add_activation(bn5.get_output(0), type=trt.ActivationType.RELU)
pool5 = network.add_pooling(relu5.get_output(0), type=trt.PoolingType.AVERAGE, window_size=trt.DimsHW(7, 7))
fc1 = network.add_fully_connected(input=pool5.get_output(0),
num_outputs=OUTPUT_SIZE,
kernel=weight_map["classifier.weight"],
bias=weight_map["classifier.bias"])
assert fc1
fc1.get_output(0).name = OUTPUT_BLOB_NAME
network.mark_output(fc1.get_output(0))
# Build Engine
builder.max_batch_size = max_batch_size
builder.max_workspace_size = 1 << 20
engine = builder.build_engine(network, config)
del network
del weight_map
return engine
def API_to_model(max_batch_size):
builder = trt.Builder(TRT_LOGGER)
config = builder.create_builder_config()
engine = create_engine(max_batch_size, builder, config, trt.float32)
assert engine
with open(ENGINE_PATH, "wb") as f:
f.write(engine.serialize())
del engine
del builder
del config
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-s", action='store_true')
parser.add_argument("-d", action='store_true')
args = parser.parse_args()
if not (args.s ^ args.d):
print(
"arguments not right!\n"
"python densenet121.py -s # serialize model to plan file\n"
"python densenet121.py -d # deserialize plan file and run inference"
)
sys.exit()
if args.s:
API_to_model(BATCH_SIZE)
else:
runtime = trt.Runtime(TRT_LOGGER)
assert runtime
with open(ENGINE_PATH, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
assert engine
context = engine.create_execution_context()
assert context
data = np.ones((BATCH_SIZE * 3 * INPUT_H * INPUT_W), dtype=np.float32)
inputs, outputs, bindings, stream = allocate_buffers(engine)
inputs[0].host = data
trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
print(f'Output: \n{trt_outputs[0][:10]}\n{trt_outputs[0][-10:]}')