-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathutil.py
195 lines (140 loc) · 5.58 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os, struct, math
import numpy as np
import torch
from glob import glob
import cv2
import torch.nn.functional as F
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
def get_latest_file(root_dir):
"""Returns path to latest file in a directory."""
list_of_files = glob.glob(os.path.join(root_dir, '*'))
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file
def parse_comma_separated_integers(string):
return list(map(int, string.split(',')))
def convert_image(img):
if not isinstance(img, np.ndarray):
img = np.array(img.cpu().detach().numpy())
img = img.squeeze()
img = img.transpose(1,2,0)
img += 1.
img /= 2.
img *= 2**8 - 1
img = img.round().clip(0, 2**8-1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def write_img(img, path):
cv2.imwrite(path, img.astype(np.uint8))
def in_out_to_param_count(in_out_tuples):
return np.sum([np.prod(in_out) + in_out[-1] for in_out in in_out_tuples])
def parse_intrinsics(filepath, trgt_sidelength=None, invert_y=False):
# Get camera intrinsics
with open(filepath, 'r') as file:
f, cx, cy, _ = map(float, file.readline().split())
grid_barycenter = torch.Tensor(list(map(float, file.readline().split())))
scale = float(file.readline())
height, width = map(float, file.readline().split())
try:
world2cam_poses = int(file.readline())
except ValueError:
world2cam_poses = None
if world2cam_poses is None:
world2cam_poses = False
world2cam_poses = bool(world2cam_poses)
if trgt_sidelength is not None:
cx = cx/width * trgt_sidelength
cy = cy/height * trgt_sidelength
f = trgt_sidelength / height * f
fx = f
if invert_y:
fy = -f
else:
fy = f
# Build the intrinsic matrices
full_intrinsic = np.array([[fx, 0., cx, 0.],
[0., fy, cy, 0],
[0., 0, 1, 0],
[0, 0, 0, 1]])
return full_intrinsic, grid_barycenter, scale, world2cam_poses
def lin2img(tensor):
batch_size, num_samples, channels = tensor.shape
sidelen = np.sqrt(num_samples).astype(int)
return tensor.permute(0,2,1).view(batch_size, channels, sidelen, sidelen)
def num_divisible_by_2(number):
i = 0
while not number%2:
number = number // 2
i += 1
return i
def cond_mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def load_pose(filename):
assert os.path.isfile(filename)
lines = open(filename).read().splitlines()
assert len(lines) == 4
lines = [[x[0],x[1],x[2],x[3]] for x in (x.split(" ") for x in lines)]
return torch.from_numpy(np.asarray(lines).astype(np.float32))
def normalize(img):
return (img - img.min()) / (img.max() - img.min())
def write_image(writer, name, img, iter):
writer.add_image(name, normalize(img.permute([0,3,1,2])), iter)
def print_network(net):
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("%d"%params)
def custom_load(model, path, discriminator=None, overwrite_embeddings=False, overwrite_renderer=False, optimizer=None):
if os.path.isdir(path):
checkpoint_path = sorted(glob(os.path.join(path, "*.pth")))[-1]
else:
checkpoint_path = path
whole_dict = torch.load(checkpoint_path)
if overwrite_embeddings:
del whole_dict['model']['latent_codes.weight']
if overwrite_renderer:
keys_to_remove = [key for key in whole_dict['model'].keys() if 'rendering_net' in key]
for key in keys_to_remove:
print(key)
whole_dict['model'].pop(key, None)
state = model.state_dict()
state.update(whole_dict['model'])
model.load_state_dict(state)
if discriminator:
discriminator.load_state_dict(whole_dict['discriminator'])
if optimizer:
optimizer.load_state_dict(whole_dict['optimizer'])
def custom_save(model, path, discriminator=None, optimizer=None):
whole_dict = {'model':model.state_dict()}
if discriminator:
whole_dict.update({'discriminator':discriminator.state_dict()})
if optimizer:
whole_dict.update({'optimizer':optimizer.state_dict()})
torch.save(whole_dict, path)
def show_images(images, titles=None):
"""Display a list of images in a single figure with matplotlib.
Parameters
---------
images: List of np.arrays compatible with plt.imshow.
cols (Default = 1): Number of columns in figure (number of rows is
set to np.ceil(n_images/float(cols))).
titles: List of titles corresponding to each image. Must have
the same length as titles.
"""
assert ((titles is None) or (len(images) == len(titles)))
cols = np.ceil(np.sqrt(len(images))).astype(int)
n_images = len(images)
if titles is None: titles = ['Image (%d)' % i for i in range(1, n_images + 1)]
fig = plt.figure()
for n, (image, title) in enumerate(zip(images, titles)):
a = fig.add_subplot(np.ceil(n_images / float(cols)), cols, n + 1)
im = a.imshow(image)
a.get_xaxis().set_visible(False)
a.get_yaxis().set_visible(False)
if len(images) < 10:
divider = make_axes_locatable(a)
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
plt.tight_layout()
# fig.set_size_inches(np.array(fig.get_size_inches()) * n_images)
return fig