-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathtrain.py
270 lines (214 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import configargparse
import os, time, datetime
import torch
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import dataio
from torch.utils.data import DataLoader
from srns import *
import util
p = configargparse.ArgumentParser()
p.add('-c', '--config_filepath', required=False, is_config_file=True, help='Path to config file.')
# Multi-resolution training: Instead of passing only a single value, each of these command-line arguments take comma-
# separated lists. If no multi-resolution training is required, simply pass single values (see default values).
p.add_argument('--img_sidelengths', type=str, default='64', required=False,
help='Progression of image sidelengths.'
'If comma-separated list, will train on each sidelength for respective max_steps.'
'Images are downsampled to the respective resolution.')
p.add_argument('--max_steps_per_img_sidelength', type=str, default="200000",
help='Maximum number of optimization steps.'
'If comma-separated list, is understood as steps per image_sidelength.')
p.add_argument('--batch_size_per_img_sidelength', type=str, default="64",
help='Training batch size.'
'If comma-separated list, will train each image sidelength with respective batch size.')
# Training options
p.add_argument('--data_root', required=True, help='Path to directory with training data.')
p.add_argument('--val_root', required=False, help='Path to directory with validation data.')
p.add_argument('--logging_root', type=str, default='./logs',
required=False, help='path to directory where checkpoints & tensorboard events will be saved.')
p.add_argument('--lr', type=float, default=5e-5, help='learning rate. default=5e-5')
p.add_argument('--l1_weight', type=float, default=200,
help='Weight for l1 loss term (lambda_img in paper).')
p.add_argument('--kl_weight', type=float, default=1,
help='Weight for l2 loss term on code vectors z (lambda_latent in paper).')
p.add_argument('--reg_weight', type=float, default=1e-3,
help='Weight for depth regularization term (lambda_depth in paper).')
p.add_argument('--steps_til_ckpt', type=int, default=10000,
help='Number of iterations until checkpoint is saved.')
p.add_argument('--steps_til_val', type=int, default=1000,
help='Number of iterations until validation set is run.')
p.add_argument('--no_validation', action='store_true', default=False,
help='If no validation set should be used.')
p.add_argument('--preload', action='store_true', default=False,
help='Whether to preload data to RAM.')
p.add_argument('--checkpoint_path', default=None,
help='Checkpoint to trained model.')
p.add_argument('--overwrite_embeddings', action='store_true', default=False,
help='When loading from checkpoint: Whether to discard checkpoint embeddings and initialize at random.')
p.add_argument('--start_step', type=int, default=0,
help='If continuing from checkpoint, which iteration to start counting at.')
p.add_argument('--specific_observation_idcs', type=str, default=None,
help='Only pick a subset of specific observations for each instance.')
p.add_argument('--max_num_instances_train', type=int, default=-1,
help='If \'data_root\' has more instances, only the first max_num_instances_train are used')
p.add_argument('--max_num_observations_train', type=int, default=50, required=False,
help='If an instance has more observations, only the first max_num_observations_train are used')
p.add_argument('--max_num_instances_val', type=int, default=10, required=False,
help='If \'val_root\' has more instances, only the first max_num_instances_val are used')
p.add_argument('--max_num_observations_val', type=int, default=10, required=False,
help='Maximum numbers of observations per validation instance')
p.add_argument('--has_params', action='store_true', default=False,
help='Whether each object instance already comes with its own parameter vector.')
# Model options
p.add_argument('--tracing_steps', type=int, default=10, help='Number of steps of intersection tester.')
p.add_argument('--freeze_networks', action='store_true',
help='Whether to freeze weights of all networks in SRN (not the embeddings!).')
p.add_argument('--fit_single_srn', action='store_true', required=False,
help='Only fit a single SRN for a single scene (not a class of SRNs) --> no hypernetwork')
p.add_argument('--use_unet_renderer', action='store_true',
help='Whether to use a DeepVoxels-style unet as rendering network or a per-pixel 1x1 convnet')
p.add_argument('--embedding_size', type=int, default=256,
help='Dimensionality of latent embedding.')
opt = p.parse_args()
def train():
# Parses indices of specific observations from comma-separated list.
if opt.specific_observation_idcs is not None:
specific_observation_idcs = util.parse_comma_separated_integers(opt.specific_observation_idcs)
else:
specific_observation_idcs = None
img_sidelengths = util.parse_comma_separated_integers(opt.img_sidelengths)
batch_size_per_sidelength = util.parse_comma_separated_integers(opt.batch_size_per_img_sidelength)
max_steps_per_sidelength = util.parse_comma_separated_integers(opt.max_steps_per_img_sidelength)
train_dataset = dataio.SceneClassDataset(root_dir=opt.data_root,
max_num_instances=opt.max_num_instances_train,
max_observations_per_instance=opt.max_num_observations_train,
img_sidelength=img_sidelengths[0],
specific_observation_idcs=specific_observation_idcs,
samples_per_instance=1)
assert (len(img_sidelengths) == len(batch_size_per_sidelength)), \
"Different number of image sidelengths passed than batch sizes."
assert (len(img_sidelengths) == len(max_steps_per_sidelength)), \
"Different number of image sidelengths passed than max steps."
if not opt.no_validation:
assert (opt.val_root is not None), "No validation directory passed."
val_dataset = dataio.SceneClassDataset(root_dir=opt.val_root,
max_num_instances=opt.max_num_instances_val,
max_observations_per_instance=opt.max_num_observations_val,
img_sidelength=img_sidelengths[0],
samples_per_instance=1)
collate_fn = val_dataset.collate_fn
val_dataloader = DataLoader(val_dataset,
batch_size=2,
shuffle=False,
drop_last=True,
collate_fn=val_dataset.collate_fn)
model = SRNsModel(num_instances=train_dataset.num_instances,
latent_dim=opt.embedding_size,
has_params=opt.has_params,
fit_single_srn=opt.fit_single_srn,
use_unet_renderer=opt.use_unet_renderer,
tracing_steps=opt.tracing_steps,
freeze_networks=opt.freeze_networks)
model.train()
model.cuda()
if opt.checkpoint_path is not None:
print("Loading model from %s" % opt.checkpoint_path)
util.custom_load(model, path=opt.checkpoint_path,
discriminator=None,
optimizer=None,
overwrite_embeddings=opt.overwrite_embeddings)
ckpt_dir = os.path.join(opt.logging_root, 'checkpoints')
events_dir = os.path.join(opt.logging_root, 'events')
util.cond_mkdir(opt.logging_root)
util.cond_mkdir(ckpt_dir)
util.cond_mkdir(events_dir)
# Save command-line parameters log directory.
with open(os.path.join(opt.logging_root, "params.txt"), "w") as out_file:
out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()]))
# Save text summary of model into log directory.
with open(os.path.join(opt.logging_root, "model.txt"), "w") as out_file:
out_file.write(str(model))
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
writer = SummaryWriter(events_dir)
iter = opt.start_step
epoch = iter // len(train_dataset)
step = 0
print('Beginning training...')
# This loop implements training with an increasing image sidelength.
cum_max_steps = 0 # Tracks max_steps cumulatively over all image sidelengths.
for img_sidelength, max_steps, batch_size in zip(img_sidelengths, max_steps_per_sidelength,
batch_size_per_sidelength):
print("\n" + "#" * 10)
print("Training with sidelength %d for %d steps with batch size %d" % (img_sidelength, max_steps, batch_size))
print("#" * 10 + "\n")
train_dataset.set_img_sidelength(img_sidelength)
# Need to instantiate DataLoader every time to set new batch size.
train_dataloader = DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
collate_fn=train_dataset.collate_fn,
pin_memory=opt.preload)
cum_max_steps += max_steps
# Loops over epochs.
while True:
for model_input, ground_truth in train_dataloader:
model_outputs = model(model_input)
optimizer.zero_grad()
dist_loss = model.get_image_loss(model_outputs, ground_truth)
reg_loss = model.get_regularization_loss(model_outputs, ground_truth)
latent_loss = model.get_latent_loss()
weighted_dist_loss = opt.l1_weight * dist_loss
weighted_reg_loss = opt.reg_weight * reg_loss
weighted_latent_loss = opt.kl_weight * latent_loss
total_loss = (weighted_dist_loss
+ weighted_reg_loss
+ weighted_latent_loss)
total_loss.backward()
optimizer.step()
print("Iter %07d Epoch %03d L_img %0.4f L_latent %0.4f L_depth %0.4f" %
(iter, epoch, weighted_dist_loss, weighted_latent_loss, weighted_reg_loss))
model.write_updates(writer, model_outputs, ground_truth, iter)
writer.add_scalar("scaled_distortion_loss", weighted_dist_loss, iter)
writer.add_scalar("scaled_regularization_loss", weighted_reg_loss, iter)
writer.add_scalar("scaled_latent_loss", weighted_latent_loss, iter)
writer.add_scalar("total_loss", total_loss, iter)
if iter % opt.steps_til_val == 0 and not opt.no_validation:
print("Running validation set...")
model.eval()
with torch.no_grad():
psnrs = []
ssims = []
dist_losses = []
for model_input, ground_truth in val_dataloader:
model_outputs = model(model_input)
dist_loss = model.get_image_loss(model_outputs, ground_truth).cpu().numpy()
psnr, ssim = model.get_psnr(model_outputs, ground_truth)
psnrs.append(psnr)
ssims.append(ssim)
dist_losses.append(dist_loss)
model.write_updates(writer, model_outputs, ground_truth, iter, prefix='val_')
writer.add_scalar("val_dist_loss", np.mean(dist_losses), iter)
writer.add_scalar("val_psnr", np.mean(psnrs), iter)
writer.add_scalar("val_ssim", np.mean(ssims), iter)
model.train()
iter += 1
step += 1
if iter == cum_max_steps:
break
if iter % opt.steps_til_ckpt == 0:
util.custom_save(model,
os.path.join(ckpt_dir, 'epoch_%04d_iter_%06d.pth' % (epoch, iter)),
discriminator=None,
optimizer=optimizer)
if iter == cum_max_steps:
break
epoch += 1
util.custom_save(model,
os.path.join(ckpt_dir, 'epoch_%04d_iter_%06d.pth' % (epoch, iter)),
discriminator=None,
optimizer=optimizer)
def main():
train()
if __name__ == '__main__':
main()