-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathhyperlayers.py
230 lines (179 loc) · 8 KB
/
hyperlayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
'''Pytorch implementations of hyper-network modules.'''
import torch
import torch.nn as nn
from pytorch_prototyping import pytorch_prototyping
import functools
def partialclass(cls, *args, **kwds):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwds)
return NewCls
class LookupLayer(nn.Module):
def __init__(self, in_ch, out_ch, num_objects):
super().__init__()
self.out_ch = out_ch
self.lookup_lin = LookupLinear(in_ch,
out_ch,
num_objects=num_objects)
self.norm_nl = nn.Sequential(
nn.LayerNorm([self.out_ch], elementwise_affine=False),
nn.ReLU(inplace=True)
)
def forward(self, obj_idx):
net = nn.Sequential(
self.lookup_lin(obj_idx),
self.norm_nl
)
return net
class LookupFC(nn.Module):
def __init__(self,
hidden_ch,
num_hidden_layers,
num_objects,
in_ch,
out_ch,
outermost_linear=False):
super().__init__()
self.layers = nn.ModuleList()
self.layers.append(LookupLayer(in_ch=in_ch, out_ch=hidden_ch, num_objects=num_objects))
for i in range(num_hidden_layers):
self.layers.append(LookupLayer(in_ch=hidden_ch, out_ch=hidden_ch, num_objects=num_objects))
if outermost_linear:
self.layers.append(LookupLinear(in_ch=hidden_ch, out_ch=out_ch, num_objects=num_objects))
else:
self.layers.append(LookupLayer(in_ch=hidden_ch, out_ch=out_ch, num_objects=num_objects))
def forward(self, obj_idx):
net = []
for i in range(len(self.layers)):
net.append(self.layers[i](obj_idx))
return nn.Sequential(*net)
class LookupLinear(nn.Module):
def __init__(self,
in_ch,
out_ch,
num_objects):
super().__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.hypo_params = nn.Embedding(num_objects, in_ch * out_ch + out_ch)
for i in range(num_objects):
nn.init.kaiming_normal_(self.hypo_params.weight.data[i, :self.in_ch * self.out_ch].view(self.out_ch, self.in_ch),
a=0.0,
nonlinearity='relu',
mode='fan_in')
self.hypo_params.weight.data[i, self.in_ch * self.out_ch:].fill_(0.)
def forward(self, obj_idx):
hypo_params = self.hypo_params(obj_idx)
# Indices explicit to catch erros in shape of output layer
weights = hypo_params[..., :self.in_ch * self.out_ch]
biases = hypo_params[..., self.in_ch * self.out_ch:(self.in_ch * self.out_ch)+self.out_ch]
biases = biases.view(*(biases.size()[:-1]), 1, self.out_ch)
weights = weights.view(*(weights.size()[:-1]), self.out_ch, self.in_ch)
return BatchLinear(weights=weights, biases=biases)
class HyperLayer(nn.Module):
'''A hypernetwork that predicts a single Dense Layer, including LayerNorm and a ReLU.'''
def __init__(self,
in_ch,
out_ch,
hyper_in_ch,
hyper_num_hidden_layers,
hyper_hidden_ch):
super().__init__()
self.hyper_linear = HyperLinear(in_ch=in_ch,
out_ch=out_ch,
hyper_in_ch=hyper_in_ch,
hyper_num_hidden_layers=hyper_num_hidden_layers,
hyper_hidden_ch=hyper_hidden_ch)
self.norm_nl = nn.Sequential(
nn.LayerNorm([out_ch], elementwise_affine=False),
nn.ReLU(inplace=True)
)
def forward(self, hyper_input):
'''
:param hyper_input: input to hypernetwork.
:return: nn.Module; predicted fully connected network.
'''
return nn.Sequential(self.hyper_linear(hyper_input), self.norm_nl)
class HyperFC(nn.Module):
'''Builds a hypernetwork that predicts a fully connected neural network.
'''
def __init__(self,
hyper_in_ch,
hyper_num_hidden_layers,
hyper_hidden_ch,
hidden_ch,
num_hidden_layers,
in_ch,
out_ch,
outermost_linear=False):
super().__init__()
PreconfHyperLinear = partialclass(HyperLinear,
hyper_in_ch=hyper_in_ch,
hyper_num_hidden_layers=hyper_num_hidden_layers,
hyper_hidden_ch=hyper_hidden_ch)
PreconfHyperLayer = partialclass(HyperLayer,
hyper_in_ch=hyper_in_ch,
hyper_num_hidden_layers=hyper_num_hidden_layers,
hyper_hidden_ch=hyper_hidden_ch)
self.layers = nn.ModuleList()
self.layers.append(PreconfHyperLayer(in_ch=in_ch, out_ch=hidden_ch))
for i in range(num_hidden_layers):
self.layers.append(PreconfHyperLayer(in_ch=hidden_ch, out_ch=hidden_ch))
if outermost_linear:
self.layers.append(PreconfHyperLinear(in_ch=hidden_ch, out_ch=out_ch))
else:
self.layers.append(PreconfHyperLayer(in_ch=hidden_ch, out_ch=out_ch))
def forward(self, hyper_input):
'''
:param hyper_input: Input to hypernetwork.
:return: nn.Module; Predicted fully connected neural network.
'''
net = []
for i in range(len(self.layers)):
net.append(self.layers[i](hyper_input))
return nn.Sequential(*net)
class BatchLinear(nn.Module):
def __init__(self,
weights,
biases):
'''Implements a batch linear layer.
:param weights: Shape: (batch, out_ch, in_ch)
:param biases: Shape: (batch, 1, out_ch)
'''
super().__init__()
self.weights = weights
self.biases = biases
def __repr__(self):
return "BatchLinear(in_ch=%d, out_ch=%d)"%(self.weights.shape[-1], self.weights.shape[-2])
def forward(self, input):
output = input.matmul(self.weights.permute(*[i for i in range(len(self.weights.shape)-2)], -1, -2))
output += self.biases
return output
def last_hyper_layer_init(m):
if type(m) == nn.Linear:
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
m.weight.data *= 1e-1
class HyperLinear(nn.Module):
'''A hypernetwork that predicts a single linear layer (weights & biases).'''
def __init__(self,
in_ch,
out_ch,
hyper_in_ch,
hyper_num_hidden_layers,
hyper_hidden_ch):
super().__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.hypo_params = pytorch_prototyping.FCBlock(in_features=hyper_in_ch,
hidden_ch=hyper_hidden_ch,
num_hidden_layers=hyper_num_hidden_layers,
out_features=(in_ch * out_ch) + out_ch,
outermost_linear=True)
self.hypo_params[-1].apply(last_hyper_layer_init)
def forward(self, hyper_input):
hypo_params = self.hypo_params(hyper_input.cuda())
# Indices explicit to catch erros in shape of output layer
weights = hypo_params[..., :self.in_ch * self.out_ch]
biases = hypo_params[..., self.in_ch * self.out_ch:(self.in_ch * self.out_ch)+self.out_ch]
biases = biases.view(*(biases.size()[:-1]), 1, self.out_ch)
weights = weights.view(*(weights.size()[:-1]), self.out_ch, self.in_ch)
return BatchLinear(weights=weights, biases=biases)