forked from justmarkham/DAT8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_pandas.py
382 lines (275 loc) · 13.8 KB
/
04_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
'''
CLASS: Pandas for Exploratory Data Analysis
MovieLens 100k movie rating data:
main page: http://grouplens.org/datasets/movielens/
data dictionary: http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
files: u.user, u.user_original (no header row)
WHO alcohol consumption data:
article: http://fivethirtyeight.com/datalab/dear-mona-followup-where-do-people-drink-the-most-beer-wine-and-spirits/
original data: https://github.com/fivethirtyeight/data/tree/master/alcohol-consumption
file: drinks.csv (with additional 'continent' column)
National UFO Reporting Center data:
main page: http://www.nuforc.org/webreports.html
file: ufo.csv
'''
import pandas as pd
'''
Reading Files, Selecting Columns, and Summarizing
'''
# can read a file from local computer or directly from a URL
pd.read_table('u.user')
pd.read_table('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user')
# read 'u.user' into 'users'
users = pd.read_table('u.user', sep='|', index_col='user_id')
# examine the users data
users # print the first 30 and last 30 rows
type(users) # DataFrame
users.head() # print the first 5 rows
users.head(10) # print the first 10 rows
users.tail() # print the last 5 rows
users.index # "the index" (aka "the labels")
users.columns # column names (which is "an index")
users.dtypes # data types of each column
users.shape # number of rows and columns
users.values # underlying numpy array
# select a column
users['gender'] # select one column
type(users['gender']) # Series
users.gender # select one column using the DataFrame attribute
# summarize (describe) the DataFrame
users.describe() # describe all numeric columns
users.describe(include=['object']) # describe all object columns
users.describe(include='all') # describe all columns
# summarize a Series
users.gender.describe() # describe a single column
users.age.mean() # only calculate the mean
# count the number of occurrences of each value
users.gender.value_counts() # most useful for categorical variables
users.age.value_counts() # can also be used with numeric variables
'''
EXERCISE ONE
'''
# read drinks.csv into a DataFrame called 'drinks'
# print the head and the tail
# examine the default index, data types, and shape
# print the 'beer_servings' Series
# calculate the mean 'beer_servings' for the entire dataset
# count the number of occurrences of each 'continent' value and see if it looks correct
# BONUS: display only the number of rows of the 'users' DataFrame
# BONUS: display the 3 most frequent occupations in 'users'
# BONUS: create the 'users' DataFrame from the u.user_original file (which lacks a header row)
# Hint: read the pandas.read_table documentation
'''
Filtering and Sorting
'''
# boolean filtering: only show users with age < 20
young_bool = users.age < 20 # create a Series of booleans...
users[young_bool] # ...and use that Series to filter rows
users[users.age < 20] # or, combine into a single step
users[users.age < 20].occupation # select one column from the filtered results
users[users.age < 20].occupation.value_counts() # value_counts of resulting Series
# boolean filtering with multiple conditions
users[(users.age < 20) & (users.gender=='M')] # ampersand for AND condition
users[(users.age < 20) | (users.age > 60)] # pipe for OR condition
# sorting
users.age.order() # sort a column
users.sort('age') # sort a DataFrame by a single column
users.sort('age', ascending=False) # use descending order instead
'''
EXERCISE TWO
'''
# filter 'drinks' to only include European countries
# filter 'drinks' to only include European countries with wine_servings > 300
# calculate the mean 'beer_servings' for all of Europe
# determine which 10 countries have the highest total_litres_of_pure_alcohol
# BONUS: sort 'users' by 'occupation' and then by 'age' (in a single command)
# BONUS: filter 'users' to only include doctors and lawyers without using a |
# Hint: read the pandas.Series.isin documentation
'''
Renaming, Adding, and Removing Columns
'''
# rename one or more columns
drinks.rename(columns={'beer_servings':'beer', 'wine_servings':'wine'})
drinks.rename(columns={'beer_servings':'beer', 'wine_servings':'wine'}, inplace=True)
# replace all column names
drink_cols = ['country', 'beer', 'spirit', 'wine', 'liters', 'continent']
drinks.columns = drink_cols
# replace all column names when reading the file
drinks = pd.read_csv('drinks.csv', header=0, names=drink_cols)
# add a new column as a function of existing columns
drinks['servings'] = drinks.beer + drinks.spirit + drinks.wine
drinks['mL'] = drinks.liters * 1000
# removing columns
drinks.drop('mL', axis=1) # axis=0 for rows, 1 for columns
drinks.drop(['mL', 'servings'], axis=1, inplace=True) # drop multiple columns
'''
Handling Missing Values
'''
# missing values are usually excluded by default
drinks.continent.value_counts() # excludes missing values
drinks.continent.value_counts(dropna=False) # includes missing values
# find missing values in a Series
drinks.continent.isnull() # True if missing
drinks.continent.notnull() # True if not missing
# use a boolean Series to filter DataFrame rows
drinks[drinks.continent.isnull()] # only show rows where continent is missing
drinks[drinks.continent.notnull()] # only show rows where continent is not missing
# side note: understanding axes
drinks.sum() # sums "down" the 0 axis (rows)
drinks.sum(axis=0) # equivalent (since axis=0 is the default)
drinks.sum(axis=1) # sums "across" the 1 axis (columns)
# side note: adding booleans
pd.Series([True, False, True]) # create a boolean Series
pd.Series([True, False, True]).sum() # converts False to 0 and True to 1
# find missing values in a DataFrame
drinks.isnull() # DataFrame of booleans
drinks.isnull().sum() # count the missing values in each column
# drop missing values
drinks.dropna() # drop a row if ANY values are missing
drinks.dropna(how='all') # drop a row only if ALL values are missing
# fill in missing values
drinks.continent.fillna(value='NA', inplace=True) # fill in missing values with 'NA'
# turn off the missing value filter
drinks = pd.read_csv('drinks.csv', header=0, names=drink_cols, na_filter=False)
'''
EXERCISE THREE
'''
# read ufo.csv into a DataFrame called 'ufo'
# check the shape of the DataFrame
# calculate the most frequent value for each of the columns (in a single command)
# what are the four most frequent colors reported?
# for reports in VA, what's the most frequent city?
# show only the UFO reports from Arlington, VA
# count the number of missing values in each column
# show only the UFO reports in which the City is missing
# how many rows remain if you drop all rows with any missing values?
# replace any spaces in the column names with an underscore
# BONUS: redo the task above, writing generic code to replace spaces with underscores
# In other words, your code should not reference the specific column names
# BONUS: create a new column called 'Location' that includes both City and State
# For example, the 'Location' for the first row would be 'Ithaca, NY'
'''
Split-Apply-Combine
Diagram: http://i.imgur.com/yjNkiwL.png
'''
# for each continent, calculate the mean beer servings
drinks.groupby('continent').beer.mean()
# for each continent, count the number of occurrences
drinks.continent.value_counts()
# for each continent, describe beer servings
drinks.groupby('continent').beer.describe()
# similar, but outputs a DataFrame and can be customized
drinks.groupby('continent').beer.agg(['count', 'mean', 'min', 'max'])
drinks.groupby('continent').beer.agg(['count', 'mean', 'min', 'max']).sort('mean')
# if you don't specify a column to which the aggregation function should be applied,
# it will be applied to all numeric columns
drinks.groupby('continent').mean()
drinks.groupby('continent').describe()
'''
EXERCISE FOUR
'''
# for each occupation in 'users', count the number of occurrences
# for each occupation, calculate the mean age
# BONUS: for each occupation, calculate the minimum and maximum ages
# BONUS: for each combination of occupation and gender, calculate the mean age
'''
Selecting Multiple Columns and Filtering Rows
'''
# select multiple columns
my_cols = ['City', 'State'] # create a list of column names...
ufo[my_cols] # ...and use that list to select columns
ufo[['City', 'State']] # or, combine into a single step
# use loc to select columns by name
ufo.loc[:, 'City'] # colon means "all rows", then select one column
ufo.loc[:, ['City', 'State']] # select two columns
ufo.loc[:, 'City':'State'] # select a range of columns
# loc can also filter rows by "name" (the index)
ufo.loc[0, :] # row 0, all columns
ufo.loc[0:2, :] # rows 0/1/2, all columns
ufo.loc[0:2, 'City':'State'] # rows 0/1/2, range of columns
# use iloc to filter rows and select columns by integer position
ufo.iloc[:, [0, 3]] # all rows, columns in position 0/3
ufo.iloc[:, 0:4] # all rows, columns in position 0/1/2/3
ufo.iloc[0:3, :] # rows in position 0/1/2, all columns
'''
Other Frequently Used Features
'''
# map existing values to a different set of values
users['is_male'] = users.gender.map({'F':0, 'M':1})
# encode strings as integer values (automatically starts at 0)
users['occupation_num'] = users.occupation.factorize()[0]
# determine unique values in a column
users.occupation.nunique() # count the number of unique values
users.occupation.unique() # return the unique values
# replace all instances of a value in a column (must match entire value)
ufo.State.replace('Fl', 'FL', inplace=True)
# string methods are accessed via 'str'
ufo.State.str.upper() # converts to uppercase
ufo.Colors_Reported.str.contains('RED', na='False') # checks for a substring
# convert a string to the datetime format
ufo['Time'] = pd.to_datetime(ufo.Time)
ufo.Time.dt.hour # datetime format exposes convenient attributes
(ufo.Time.max() - ufo.Time.min()).days # also allows you to do datetime "math"
ufo[ufo.Time > pd.datetime(2014, 1, 1)] # boolean filtering with datetime format
# setting and then removing an index
ufo.set_index('Time', inplace=True)
ufo.reset_index(inplace=True)
# sort a column by its index
ufo.State.value_counts().sort_index()
# change the data type of a column
drinks['beer'] = drinks.beer.astype('float')
# change the data type of a column when reading in a file
pd.read_csv('drinks.csv', dtype={'beer_servings':float})
# create dummy variables for 'continent' and exclude first dummy column
continent_dummies = pd.get_dummies(drinks.continent, prefix='cont').iloc[:, 1:]
# concatenate two DataFrames (axis=0 for rows, axis=1 for columns)
drinks = pd.concat([drinks, continent_dummies], axis=1)
'''
Less Frequently Used Features
'''
# create a DataFrame from a dictionary
pd.DataFrame({'capital':['Montgomery', 'Juneau', 'Phoenix'], 'state':['AL', 'AK', 'AZ']})
# create a DataFrame from a list of lists
pd.DataFrame([['Montgomery', 'AL'], ['Juneau', 'AK'], ['Phoenix', 'AZ']], columns=['capital', 'state'])
# detecting duplicate rows
users.duplicated() # True if a row is identical to a previous row
users.duplicated().sum() # count of duplicates
users[users.duplicated()] # only show duplicates
users.drop_duplicates() # drop duplicate rows
users.age.duplicated() # check a single column for duplicates
users.duplicated(['age', 'gender', 'zip_code']).sum() # specify columns for finding duplicates
# display a cross-tabulation of two Series
pd.crosstab(users.occupation, users.gender)
# alternative syntax for boolean filtering (noted as "experimental" in the documentation)
users.query('age < 20') # users[users.age < 20]
users.query("age < 20 and gender=='M'") # users[(users.age < 20) & (users.gender=='M')]
users.query('age < 20 or age > 60') # users[(users.age < 20) | (users.age > 60)]
# display the memory usage of a DataFrame
ufo.info() # total usage
ufo.memory_usage() # usage by column
# change a Series to the 'category' data type (reduces memory usage and increases performance)
ufo['State'] = ufo.State.astype('category')
# temporarily define a new column as a function of existing columns
drinks.assign(servings = drinks.beer + drinks.spirit + drinks.wine)
# limit which rows are read when reading in a file
pd.read_csv('drinks.csv', nrows=10) # only read first 10 rows
pd.read_csv('drinks.csv', skiprows=[1, 2]) # skip the first two rows of data
# write a DataFrame out to a CSV
drinks.to_csv('drinks_updated.csv') # index is used as first column
drinks.to_csv('drinks_updated.csv', index=False) # ignore index
# save a DataFrame to disk (aka 'pickle') and read it from disk (aka 'unpickle')
drinks.to_pickle('drinks_pickle')
pd.read_pickle('drinks_pickle')
# randomly sample a DataFrame
train = drinks.sample(frac=0.75, random_state=1) # will contain 75% of the rows
test = drinks[~drinks.index.isin(train.index)] # will contain the other 25%
# change the maximum number of rows and columns printed ('None' means unlimited)
pd.set_option('max_rows', None) # default is 60 rows
pd.set_option('max_columns', None) # default is 20 columns
print drinks
# reset options to defaults
pd.reset_option('max_rows')
pd.reset_option('max_columns')
# change the options temporarily (settings are restored when you exit the 'with' block)
with pd.option_context('max_rows', None, 'max_columns', None):
print drinks